Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA

被引:269
作者
Ödeen, A [1 ]
Håstad, O [1 ]
机构
[1] Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Ecol, Uppsala, Sweden
关键词
chromatic ocular disposition; color vision; ultraviolet; opsin;
D O I
10.1093/molbev/msg108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To gain insights into the evolution and ecology of visually acute animals such as birds, biologists often need to understand how these animals perceive colors. This poses a problem, since the human eye is of a different design than that of most other animals. The standard solution is to examine the spectral sensitivity properties of animal retinas through microspectophotometry-a procedure that is rather complicated and therefore only has allowed examinations of a limited number of species to date. We have developed a faster and simpler molecular method, which can be used to estimate the color sensitivities of a bird by sequencing a part of the gene coding for the ultraviolet or violet absorbing opsin in the avian retina. With our method, there is no need to sacrifice the animal, and it thereby facilitates large screenings, including rare and endangered species beyond the reach of microspectrophotometry. Color vision in birds may be categorized into two classes: one with a short-wavelength sensitivity biased toward violet (VS) and the other biased toward ultraviolet (UVS). Using our method on 45 species from 35 families, we demonstrate that the distribution of avian color vision is more complex than has previously been shown. Our data support VS as the ancestral state in birds and show that UVS has evolved independently at least four times. We found species with the UVS type of color vision in the orders Psittaciformes and Passeriformes, in agreement with previous findings. However, species within the families Corvidae and Tyrannidae did not share this character with other passeriforms. We also found UVS type species within the Laridae and Struthionidae families. Raptors (Accipitridae and Falconidae) are of the violet type, giving them a vision system different from their passeriform prey. Intriguing effects on the evolution of color signals can be expected from interactions between predators and prey. Such interactions may explain the presence of UVS in Laridae and Passeriformes.
引用
收藏
页码:855 / 861
页数:7
相关论文
共 37 条
[1]   Ultraviolet colour vision and ornamentation in bluethroats [J].
Andersson, S ;
Amundsen, T .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1388) :1587-1591
[2]   Ultraviolet vision and mate choice in zebra finches [J].
Bennett, ATD ;
Cuthill, IC ;
Partridge, JC ;
Maier, EJ .
NATURE, 1996, 380 (6573) :433-435
[3]   Ultraviolet plumage colors predict mate preferences in starlings [J].
Bennett, ATD ;
Cuthill, IC ;
Partridge, JC ;
Lunau, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8618-8621
[4]   VISUAL PIGMENTS AND OIL DROPLETS IN GENETICALLY MANIPULATED AND CAROTENOID DEPRIVED QUAIL - A MICROSPECTROPHOTOMETRIC STUDY [J].
BOWMAKER, JK ;
KOVACH, JK ;
WHITMORE, AV ;
LOEW, ER .
VISION RESEARCH, 1993, 33 (5-6) :571-578
[5]   VISUAL PIGMENTS AND OIL DROPLETS IN THE PENGUIN, SPHENISCUS-HUMBOLDTI [J].
BOWMAKER, JK ;
MARTIN, GR .
JOURNAL OF COMPARATIVE PHYSIOLOGY A-SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 1985, 156 (01) :71-77
[6]   Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds [J].
Bowmaker, JK ;
Heath, LA ;
Wilkie, SE ;
Hunt, DM .
VISION RESEARCH, 1997, 37 (16) :2183-2194
[7]   Ultraviolet cues affect the foraging behaviour of blue tits [J].
Church, SC ;
Bennett, ATD ;
Cuthill, IC ;
Partridge, JC .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1998, 265 (1405) :1509-1514
[8]  
CRACRAFT J, 1981, AUK, V98, P681
[9]   Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria:: microspectrophotometry and opsin sequences [J].
Das, D ;
Wilkie, SE ;
Hunt, DM ;
Bowmaker, JK .
VISION RESEARCH, 1999, 39 (17) :2801-2815
[10]   ULTRAVIOLET VISION IN LIZARDS [J].
FLEISHMAN, LJ ;
LOEW, ER ;
LEAL, M .
NATURE, 1993, 365 (6445) :397-397