Graphical representations and cluster algorithms for critical points with fields

被引:29
作者
Redner, O
Machta, J
Chayes, LF
机构
[1] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Massachusetts, Dept Phys & Astron, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.58.2749
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A two-replica graphical representation and associated cluster algorithm are described that are applicable to ferromagnetic Ising systems with arbitrary fields. Critical points are associated with the percolation threshold of the graphical representation. Results from numerical simulations of the Ising model in a staggered field are presented. For this case, the dynamic exponent for the algorithm is measured to be less than 0.5.
引用
收藏
页码:2749 / 2752
页数:4
相关论文
共 17 条
[1]   DISCONTINUITY OF THE MAGNETIZATION IN ONE-DIMENSIONAL 1/[X-Y]2 ISING AND POTTS MODELS [J].
AIZENMAN, M ;
CHAYES, JT ;
CHAYES, L ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) :1-40
[2]   ACCURATE DETERMINATION OF THE CRITICAL LINE OF THE SQUARE ISING ANTIFERROMAGNET IN A FIELD [J].
BLOTE, HWJ ;
WU, XN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (12) :L627-L631
[3]   Graphical representations and cluster algorithms .1. Discrete spin systems [J].
Chayes, L ;
Machta, J .
PHYSICA A, 1997, 239 (04) :542-601
[4]  
CHAYES L, IN PRESS J STAT PHYS
[5]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[6]   CLUSTER MONTE-CARLO ALGORITHMS FOR RANDOM ISING-MODELS [J].
DOTSENKO, VS ;
SELKE, W ;
TALAPOV, AL .
PHYSICA A, 1991, 170 (02) :278-281
[7]   Cluster algorithm for hard spheres and related systems [J].
Dress, C ;
Krauth, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23) :L597-L601
[8]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[9]   Geometric cluster Monte Carlo simulation [J].
Heringa, JR ;
Blote, HWJ .
PHYSICAL REVIEW E, 1998, 57 (05) :4976-4978
[10]   The simple-cubic lattice gas with nearest-neighbour exclusion: Ising universality [J].
Heringa, JR ;
Blote, HWJ .
PHYSICA A, 1996, 232 (1-2) :369-374