Algorithms for Brownian dynamics

被引:70
作者
Ricci, A
Ciccotti, G
机构
[1] Univ Roma La Sapienza, INFM, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
关键词
D O I
10.1080/0026897031000108113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We derive a class of efficient and stable algorithms of Brownian dynamics using a formula, derived by Suzuki, to express time-ordered operators. These algorithms are simpler than those derived by Helfand from Runge-Kutta algorithms and, like Helfand algorithms, can be combined with SHAKE to describe the Brownian dynamics of constrained systems.
引用
收藏
页码:1927 / 1931
页数:5
相关论文
共 9 条
[1]  
Allen MP, 1997, COMPUTER SIMULATION
[2]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS .2. [J].
GREENSIDE, HS ;
HELFAND, E .
BELL SYSTEM TECHNICAL JOURNAL, 1981, 60 (08) :1927-1940
[3]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
HELFAND, E .
BELL SYSTEM TECHNICAL JOURNAL, 1979, 58 (10) :2289-2299
[4]  
Martyna GJ, 1996, MOL PHYS, V87, P1117, DOI 10.1080/00268979600100761
[5]   MOLECULAR-DYNAMICS STUDY OF A 3-DIMENSIONAL ONE-COMPONENT MODEL FOR DISTORTIVE PHASE-TRANSITIONS [J].
SCHNEIDER, T ;
STOLL, E .
PHYSICAL REVIEW B, 1978, 17 (03) :1302-1322
[6]   GENERAL DECOMPOSITION-THEORY OF ORDERED EXPONENTIALS [J].
SUZUKI, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 1993, 69 (07) :161-166
[7]   REVERSIBLE MULTIPLE TIME SCALE MOLECULAR-DYNAMICS [J].
TUCKERMAN, M ;
BERNE, BJ ;
MARTYNA, GJ .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (03) :1990-2001
[8]   BROWNIAN DYNAMICS - ITS APPLICATION TO IONIC-SOLUTIONS [J].
TURQ, P ;
LANTELME, F ;
FRIEDMAN, HL .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (07) :3039-3044
[9]   Brownian dynamics with constraints [J].
White, TO ;
Ciccotti, G ;
Hansen, JP .
MOLECULAR PHYSICS, 2001, 99 (24) :2023-2036