Pt incorporated hollow core mesoporous shell carbon nanocomposite catalyst for proton exchange membrane fuel cells

被引:32
作者
Ficicilar, Berker [1 ]
Bayrakceken, Ayse [2 ]
Eroglu, Inci [1 ]
机构
[1] Middle E Tech Univ, Dept Chem Engn, TR-06531 Ankara, Turkey
[2] Ataturk Univ, Dept Chem Engn, TR-25240 Erzurum, Turkey
关键词
PEMFC; Hollow core mesoporous shell carbon; Carbon black; Pt nanoparticles; Microwave irradiation; Cathode electrode; PT/C CATALYSTS; PERFORMANCE; PEMFC; ELECTROCATALYSTS; NANOPARTICLES; FABRICATION; DEPOSITION; STABILITY; NANOTUBES; CATHODE;
D O I
10.1016/j.ijhydene.2009.11.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, various commercial carbon black materials like Vulcan XC72, Black Pearl 2000, and Regal 330 were used as supporting material for polymer electrolyte membrane fuel cell (PEMFC) electrocatalysts. A promising carbon material exhibiting hollow core mesoporous shell (HCMS) structure was synthesized by the template replication of the silica spheres with solid core and mesoporous shell structure. Two carbon supports with similar pore texture were prepared by the injection of two different carbon precursors. 20 wt% Pt/C electrocatalysts were synthesized by microwave irradiation method as the cathode electrode for PEMFC. Ex situ characterization of the electrocatalysts was performed by N-2 adsorption analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Electrochemical characterization of the electrocatalysts was conducted by cyclic voltammetry (CV) analysis. Effect of different carbon supports on the cathode performance was investigated in a single cell H-2/O-2 PEMFC. Fuel cell performance tests and additional ex situ characterizations showed that HCMS carbons exhibit good support characteristics with improved single cell performance. For the cathode electrode kinetics, promising fuel cell performance results were obtained as compared to the commercial carbon blacks. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9924 / 9933
页数:10
相关论文
共 33 条
[1]   Platinum catalyst supported on mesoporous carbon for PEMFC [J].
Ambrosio, Elisa Paola ;
Francia, Carlotta ;
Manzoli, Maela ;
Penazzi, Nerino ;
Spinelli, Paolo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (12) :3142-3145
[2]   Formation of carbon-supported PtM alloys for low temperature fuel cells: a review [J].
Antolini, E .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) :563-573
[3]   Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells [J].
Antolini, E .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (14) :2995-3005
[4]   Carbon supports for low-temperature fuel cell catalysts [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 88 (1-2) :1-24
[5]  
ANTONUCCI PL, 1994, J APPL ELECTROCHEM, V24, P58
[6]   Efficiency and economics of proton exchange membrane (PEM) fuel cells [J].
Barbir, F ;
Gomez, T .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1997, 22 (10-11) :1027-1037
[7]   Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers [J].
Baturina, OA ;
Aubuchon, SR ;
Wynne, KJ .
CHEMISTRY OF MATERIALS, 2006, 18 (06) :1498-1504
[8]   Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition [J].
Bayrakceken, Ayse ;
Smirnova, Alevtina ;
Kitkamthorn, Usanee ;
Aindow, Mark ;
Tuerker, Lemi ;
Eroglu, Inci ;
Erkey, Can .
CHEMICAL ENGINEERING COMMUNICATIONS, 2009, 196 (1-2) :194-203
[9]   Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique [J].
Bayrakceken, Ayse ;
Smirnova, Alevtina ;
Kitkamthorn, Usanee ;
Aindow, Mark ;
Turker, Lemi ;
Eroglu, Inci ;
Erkey, Can .
JOURNAL OF POWER SOURCES, 2008, 179 (02) :532-540
[10]   Effects of membrane electrode assembly components on proton exchange membrane fuel cell performance [J].
Bayrakceken, Ayse ;
Erkan, Serdar ;
Turker, Lemi ;
Eroglu, Inci .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) :165-170