Genome-wide linkage analysis of serum adiponectin in the Pima Indian population

被引:85
作者
Lindsay, RS
Funahashi, T
Krakoff, J
Matsuzawa, Y
Tanaka, S
Kobes, S
Bennett, PH
Tataranni, PA
Knowler, WC
Hanson, RL
机构
[1] NIDDK, NIH, Phoenix, AZ 85014 USA
[2] Osaka Univ, Grad Sch Med, Dept Internal Med & Mol Sci, Osaka, Japan
关键词
D O I
10.2337/diabetes.52.9.2419
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Adiponectin is a circulating protein secreted by adipocytes and is thought to have insulin-sensitizing effects. We present genetic analysis of adiponectin levels in 517 Pima Indians without diabetes (from 162 families, 750 sib-pairs). Adiponectin concentrations were heritable, with 39% of the variance of age- and sex-adjusted adiponectin potentially accounted for by additive genetic influences in this population. In genome-wide linkage analyses, suggestive linkage (logarithm of odds [LOD] = 3.0) of adiponectin adjusted for age and sex was found on chromosome 9p at 18 cM. Linkage was also present after inclusion of adiponectin concentrations of siblings with type 2 diabetes not treated pharmacologically (total siblings 582, 182 families, 860 sib-pairs: LOD = 3.5). Tentative evidence of linkage was also found on chromosomes 2 (LOD = 1.7 at 89 cM), 3 (LOD = 1.9 at 124 cM), and 10 (LOD = 1.7 at 70 cM), offering some support to findings of a previous genome-wide scan of adiponectin. Our data suggest that quantitative trait loci on chromosomes 2, 3, 9, and 10 may influence circulating adiponectin concentrations in the Pima population.
引用
收藏
页码:2419 / 2425
页数:7
相关论文
共 51 条
[1]   Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure [J].
Allison, DB ;
Neale, MC ;
Zannolli, R ;
Schork, NJ ;
Amos, CI ;
Blangero, J .
AMERICAN JOURNAL OF HUMAN GENETICS, 1999, 65 (02) :531-544
[2]  
Almasy L, 1997, GENET EPIDEMIOL, V14, P953, DOI 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO
[3]  
2-K
[4]  
AMOS CI, 1994, AM J HUM GENET, V54, P535
[5]   Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity [J].
Arita, Y ;
Kihara, S ;
Ouchi, N ;
Takahashi, M ;
Maeda, K ;
Miyagawa, J ;
Hotta, K ;
Shimomura, I ;
Nakamura, T ;
Miyaoka, K ;
Kuriyama, H ;
Nishida, M ;
Yamashita, S ;
Okubo, K ;
Matsubara, K ;
Muraguchi, M ;
Ohmoto, Y ;
Funahashi, T ;
Matsuzawa, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (01) :79-83
[6]   Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans [J].
Arya, R ;
Duggirala, R ;
Almasy, L ;
Rainwater, DL ;
Mahaney, MC ;
Cole, S ;
Dyer, TD ;
Williams, K ;
Leach, RJ ;
Hixson, JE ;
MacCluer, JW ;
O'Connell, P ;
Stern, MP ;
Blangero, J .
NATURE GENETICS, 2002, 30 (01) :102-105
[7]   The adipocyte-secreted protein Acrp30 enhances hepatic insulin action [J].
Berg, AH ;
Combs, TP ;
Du, XL ;
Brownlee, M ;
Scherer, PE .
NATURE MEDICINE, 2001, 7 (08) :947-953
[8]   Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex [J].
Cnop, M ;
Havel, PJ ;
Utzschneider, KM ;
Carr, DB ;
Sinha, MK ;
Boyko, EJ ;
Retzlaff, BM ;
Knopp, RH ;
Brunzell, JD ;
Kahn, SE .
DIABETOLOGIA, 2003, 46 (04) :459-469
[9]   The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome [J].
Comuzzie, AG ;
Funahashi, T ;
Sonnenberg, G ;
Martin, LJ ;
Jacob, HJ ;
Black, AEK ;
Maas, D ;
Takahashi, M ;
Kihara, S ;
Tanaka, S ;
Matsuzawa, Y ;
Blangero, J ;
Cohen, D ;
Kissebah, A .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2001, 86 (09) :4321-4325
[10]  
Criqui Michael H., 1998, American Journal of Medicine, V105, p48S, DOI 10.1016/S0002-9343(98)00212-5