The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals

被引:124
作者
Hossain, Md. Motaher [2 ]
Sultana, Farjana [2 ]
Kubota, Mayurni [1 ]
Koyama, Hiroyuki [1 ]
Hyakumachi, Mitsuro [1 ]
机构
[1] Gifu Univ, Fac Appl Biol Sci, Gifu 5011193, Japan
[2] Gifu Univ, United Grad Sch Agr Sci, Gifu 5011193, Japan
关键词
barley grain inoculum; culture filtrate; ethylene; jasmonate; Pseudomonas syringae pv. tomato DC3000; salicylic acid;
D O I
10.1093/pcp/pcm144
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar]) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treate wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.
引用
收藏
页码:1724 / 1736
页数:13
相关论文
共 58 条
[1]  
Ahn IP, 2002, MOL CELLS, V13, P302
[2]   Reactive electrophile species activate defense gene expression in Arabidopsis [J].
Alméras, E ;
Stolz, S ;
Vollenweider, S ;
Reymond, P ;
Mène-Saffrané, L ;
Farmer, EE .
PLANT JOURNAL, 2003, 34 (02) :202-216
[3]  
Bent E, 2006, MULTIGENIC AND INDUCED SYSTEMIC RESISTANCE IN PLANTS, P225, DOI 10.1007/0-387-23266-4_10
[4]   ARABIDOPSIS-THALIANA ATVSP IS HOMOLOGOUS TO SOYBEAN VSPA AND VSPB, GENES ENCODING VEGETATIVE STORAGE PROTEIN ACID-PHOSPHATASES, AND IS REGULATED SIMILARLY BY METHYL JASMONATE, WOUNDING, SUGARS, LIGHT AND PHOSPHATE [J].
BERGER, S ;
BELL, E ;
SADKA, A ;
MULLET, JE .
PLANT MOLECULAR BIOLOGY, 1995, 27 (05) :933-942
[5]   Coronatine and salicylic acid:: the battle between Arabidopsis and Pseudomonas for phytohormone control [J].
Block, A ;
Schmelz, E ;
Jones, JB ;
Klee, HJ .
MOLECULAR PLANT PATHOLOGY, 2005, 6 (01) :79-83
[6]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[7]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[8]   Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance [J].
Cartieaux, F ;
Thibaud, MC ;
Zimmerli, L ;
Lessard, P ;
Sarrobert, C ;
David, P ;
Gerbaud, A ;
Robaglia, C ;
Somerville, S ;
Nussaume, L .
PLANT JOURNAL, 2003, 36 (02) :177-188
[9]   Priming:: Getting ready for battle [J].
Conrath, Uwe ;
Beckers, Gerold J. M. ;
Flors, Victor ;
Garcia-Agustin, Pilar ;
Jakab, Gabor ;
Mauch, Felix ;
Newman, Mari-Anne ;
Pieterse, Corne M. J. ;
Poinssot, Benoit ;
Pozo, Maria J. ;
Pugin, Alain ;
Schaffrath, Ulrich ;
Ton, Jurriaan ;
Wendehenne, David ;
Zimmerli, Laurent ;
Mauch-Mani, Brigitte .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (10) :1062-1071
[10]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250