NolL of Rhizobium sp strain NGR234 is required for O-acetyltransferase activity

被引:28
作者
Berck, S
Perret, X
Quesada-Vincens, D
Promé, JC
Broughton, WJ
Jabbouri, S
机构
[1] Univ Geneva, Lab Biol Mol Plantes Super, CH-1292 Chambesy Geneva, Switzerland
[2] CNRS, Inst Pharmacol & Biol Struct, F-31077 Toulouse, France
关键词
D O I
10.1128/JB.181.3.957-964.1999
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated, Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by a nod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGR Omega nolL is not impaired, whereas introduction of the nod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum, Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nod box::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not.
引用
收藏
页码:957 / 964
页数:8
相关论文
共 44 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   STRUCTURES OF NODULATION FACTORS FROM THE NITROGEN-FIXING SOYBEAN SYMBIONT RHIZOBIUM-FREDII USDA257 [J].
BECFERTE, MP ;
KRISHNAN, HB ;
PROME, D ;
SAVAGNAC, A ;
PUEPPKE, SG ;
PROME, JC .
BIOCHEMISTRY, 1994, 33 (39) :11782-11788
[3]   NODULATION PROTEIN NODL OF RHIZOBIUM-LEGUMINOSARUM O-ACETYLATES LIPO-OLIGOSACCHARIDES, CHITIN FRAGMENTS AND N-ACETYLGLUCOSAMINE IN-VITRO [J].
BLOEMBERG, GV ;
THOMASOATES, JE ;
LUGTENBERG, BJJ ;
SPAINK, HP .
MOLECULAR MICROBIOLOGY, 1994, 11 (04) :793-804
[4]   IDENTIFICATION OF RHIZOBIUM PLASMID SEQUENCES INVOLVED IN RECOGNITION OF PSOPHOCARPUS, VIGNA, AND OTHER LEGUMES [J].
BROUGHTON, WJ ;
WONG, CH ;
LEWIN, A ;
SAMREY, U ;
MYINT, H ;
MEYER, H ;
DOWLING, DN ;
SIMON, R .
JOURNAL OF CELL BIOLOGY, 1986, 102 (04) :1173-1182
[5]  
CARLSON RW, 1993, J BIOL CHEM, V268, P18372
[6]   Legume nodule organogenesis [J].
Cohn, J ;
Day, RB ;
Stacey, G .
TRENDS IN PLANT SCIENCE, 1998, 3 (03) :105-110
[7]   Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis [J].
Denarie, J ;
Debelle, F ;
Prome, JC .
ANNUAL REVIEW OF BIOCHEMISTRY, 1996, 65 :503-535
[8]   INTERPOSON MUTAGENESIS OF SOIL AND WATER BACTERIA - A FAMILY OF DNA FRAGMENTS DESIGNED FOR INVITRO INSERTIONAL MUTAGENESIS OF GRAM-NEGATIVE BACTERIA [J].
FELLAY, R ;
FREY, J ;
KRISCH, H .
GENE, 1987, 52 (2-3) :147-154
[9]   ORGANIZATION OF HOST-INDUCIBLE TRANSCRIPTS ON THE SYMBIOTIC PLASMID OF RHIZOBIUM SP NGR234 [J].
FELLAY, R ;
PERRET, X ;
VIPREY, V ;
BROUGHTON, WJ ;
BRENNER, S .
MOLECULAR MICROBIOLOGY, 1995, 16 (04) :657-667
[10]   REPLICATION OF AN ORIGIN-CONTAINING DERIVATIVE OF PLASMID RK2 DEPENDENT ON A PLASMID FUNCTION PROVIDED IN TRANS [J].
FIGURSKI, DH ;
HELINSKI, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) :1648-1652