Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites

被引:119
作者
van Winden, WA [1 ]
van Dam, JC [1 ]
Ras, C [1 ]
Kleijn, RJ [1 ]
Vinke, JL [1 ]
van Gulik, WM [1 ]
Heijnen, JJ [1 ]
机构
[1] Delft Univ Technol, Fac Sci Appl, Dept Biotechnol, Kluyver Lab Biotechnol,Bioproc Technol Grp, NL-2628 BC Delft, Netherlands
关键词
C-13-labeling; metabolic-flux analysis; Saccharomyces cerevisiae; LC-MS/MS; glycolysis; pentose phosphate pathway;
D O I
10.1016/j.femsyr.2004.10.007
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolic-flux analyses in microorganisms are increasingly based on C-13-labeling data. In this paper a new approach for the measurement of C-13-label distributions is presented: rapid sampling and quenching of microorganisms from a cultivation, followed by extraction and detection by liquid chromatography-mass spectrometry of free intracellular metabolites. This approach allows the direct assessment of mass isotopomer distributions of primary metabolites. The method is applied to the glycolytic and pentose phosphate pathways of Saccharomyces cerevisiae strain CEN. PKI13-7D grown in an aerobic, glucose-limited chemostat culture. Detailed investigations of the measured mass isotopomer distributions demonstrate the accuracy and information-richness of the obtained data. The mass fractions are fitted with a cumomer model to yield the metabolic fluxes. It is estimated that 24% of the consumed glucose is catabolized via the pentose phosphate pathway. Furthermore, it is found that turnover of storage carbohydrates occurs. Inclusion of this turnover in the model leads to a large confidence interval of the estimated split ratio. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:559 / 568
页数:10
相关论文
共 21 条
[1]   TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates [J].
Blank, LM ;
Sauer, U .
MICROBIOLOGY-SGM, 2004, 150 :1085-1093
[2]   GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing [J].
Dauner, M ;
Sauer, U .
BIOTECHNOLOGY PROGRESS, 2000, 16 (04) :642-649
[3]   Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates [J].
dos Santos, MM ;
Gombert, AK ;
Christensen, B ;
Olsson, L ;
Nielsen, J .
EUKARYOTIC CELL, 2003, 2 (03) :599-608
[4]   Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis [J].
Fiaux, J ;
Çakar, ZP ;
Sonderegger, M ;
Wüthrich, K ;
Szyperski, T ;
Sauer, U .
EUKARYOTIC CELL, 2003, 2 (01) :170-180
[5]   Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae [J].
François, J ;
Parrou, JL .
FEMS MICROBIOLOGY REVIEWS, 2001, 25 (01) :125-145
[6]   Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression [J].
Gombert, AK ;
dos Santos, MM ;
Christensen, B ;
Nielsen, J .
JOURNAL OF BACTERIOLOGY, 2001, 183 (04) :1441-1451
[7]   Impact of transamination reactions and protein turnover on labeling dynamics in 13C-labeling experiments [J].
Grotkjær, T ;
Åkesson, M ;
Christensen, B ;
Gombert, AK ;
Nielsen, J .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 86 (02) :209-216
[8]   Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae [J].
Lange, HC ;
Eman, M ;
van Zuijlen, G ;
Visser, D ;
van Dam, JC ;
Frank, J ;
de Mattos, MJT ;
Heijnen, JJ .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 75 (04) :406-415
[9]  
LANGE HC, 2002, THESIS DELFT U TECHN
[10]   Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids [J].
Maaheimo, H ;
Fiaux, J ;
Çakar, ZP ;
Bailey, JE ;
Sauer, U ;
Szyperski, T .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (08) :2464-2479