Adiabatic reduction near a bifurcation in stochastically modulated systems

被引:18
作者
Drolet, F [1 ]
Vinals, J
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
[2] FAMU, FSU Coll Engn, Dept Chem Engn, Tallahassee, FL 32310 USA
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 05期
关键词
D O I
10.1103/PhysRevE.57.5036
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We reexamine the procedure of adiabatic elimination of fast relaxing variables near a bifurcation point when some of the parameters of the system are stochastically modulated. Approximate stationary solutions of the Fokker-Planck equation are obtained near threshold for the pitchfork and transcritical bifurcations. Correlations between fast variables and random modulation may shift the effective bifurcation point by an amount proportional to the intensity of the fluctuations. We also find that fluctuations of the fast variables above threshold are not always Gaussian and centered around the (deterministic) center manifold as was previously believed. Numerical solutions obtained for a few illustrative examples support these conclusions.
引用
收藏
页码:5036 / 5043
页数:8
相关论文
共 15 条
[1]   Onset of oscillatory instabilities under stochastic modulation [J].
Drolet, F ;
Vinals, J .
PHYSICAL REVIEW E, 1997, 56 (03) :2649-2657
[2]   BIFURCATIONS IN FLUCTUATING SYSTEMS - COMMENT [J].
ELPHICK, C ;
JEANNERET, M ;
TIRAPEGUI, E .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) :925-933
[3]  
Furutsu K., 1963, J RES NAT BUR STAN D, V67, P303
[4]   CARLEMAN IMBEDDING OF MULTIPLICATIVE STOCHASTIC-PROCESSES [J].
GRAHAM, R ;
SCHENZLE, A .
PHYSICAL REVIEW A, 1982, 25 (03) :1731-1754
[5]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[6]  
HAKEN H, 1977, SYNERGENETICS INTRO
[7]   BIFURCATIONS IN FLUCTUATING SYSTEMS - THE CENTER-MANIFOLD APPROACH [J].
KNOBLOCH, E ;
WIESENFELD, KA .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (03) :611-637
[8]  
LUCKE M, 1989, NOISE NONLINEAR DYNA, V2
[9]   ANALYTICAL AND NUMERICAL-STUDIES OF MULTIPLICATIVE NOISE [J].
SANCHO, JM ;
MIGUEL, MS ;
KATZ, SL ;
GUNTON, JD .
PHYSICAL REVIEW A, 1982, 26 (03) :1589-1609
[10]   MULTIPLICATIVE STOCHASTIC-PROCESSES IN STATISTICAL PHYSICS [J].
SCHENZLE, A ;
BRAND, H .
PHYSICAL REVIEW A, 1979, 20 (04) :1628-1647