K+/Na+ selectivity in K channels and valinomycin:: Over-coordination versus cavity-size constraints

被引:130
作者
Varma, Sarneer [1 ]
Sabo, Dubravko [1 ]
Rempe, Susan B. [1 ]
机构
[1] Sandia Natl Labs, Computat Biosci Dept, Albuquerque, NM 87185 USA
关键词
ion coordination; quantum chemistry; molecular association; solvation phase; ligand binding;
D O I
10.1016/j.jmb.2007.11.059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Potassium channels and valinomycin molecules share the exquisite ability to select K+ over Na+. Highly selective K channels maintain a special local environment around their binding sites devoid of competing hydrogen bond donor groups, which enables spontaneous transfer of K+ from states of low coordinations in water into states of over-coordination by eight carbonyl ligands. In such a phase-activated state, electrostatic interactions from these 8-fold binding sites, constrained to maintain high coordinations, result in K+/Na+ selectivity with no need for a specific cavity size. Under such conditions, however, direct coordination from five or six carbonyl ligands does not result in selectivity. Yet, valinomycin molecules achieve selectivity by providing only six carbonyl ligands. Does valinomycin use additional coordinating ligands from the solvent or does it have special structural features not present in K channels? Quantum chemical investigations undertaken here demonstrate that valinomycin selectivity is due to cavity size constraints that physically prevent it from collapsing onto the smaller sodium ion. Valinomycin enforces these constraints by using a combination of intramolecular hydrogen bonds and other structural features, including its specific ring size and the spacing between its connected ligands. Results of these investigations provide a consistent explanation for the experimental data available for the ion-complexation properties of valinomycin in solvents of varying polarity. Together, investigations of these two systems reveal how nature, despite being popular for its parsimony in recycling functional motifs, can use different combinations of phase, coordination number, cavity size, and rigidity (constraints) to achieve K+/Na+ selectivity. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 60 条
[1]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[2]  
AQVIST J, 1992, J PHYS CHEM-US, V96, P10019, DOI 10.1021/j100203a079
[3]   Role of fluctuations in a snug-fit mechanism of KcsA channel selectivity [J].
Asthagiri, D. ;
Pratt, Lawrence R. ;
Paulaitis, Michael E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (02)
[4]   Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities [J].
Avbelj, F ;
Luo, PZ ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :10786-10791
[5]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[6]   Functional engineered channels and pores - (Review) [J].
Bayley, H ;
Jayasinghe, L .
MOLECULAR MEMBRANE BIOLOGY, 2004, 21 (04) :209-220
[7]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[8]   Molecular dynamics of the KcsA K+ channel in a bilayer membrane [J].
Bernèche, S ;
Roux, B .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :2900-2917
[9]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[10]   NEGATIVE CONDUCTANCE CAUSED BY ENTRY OF SODIUM AND CESIUM IONS INTO POTASSIUM CHANNELS OF SQUID AXONS [J].
BEZANILLA, F ;
ARMSTRONG, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1972, 60 (05) :588-+