A large photolysis-induced pK(a) increase of the chromophore counterion in bacteriorhodopsin: Implications for ion transport mechanisms of retinal proteins

被引:58
作者
Braiman, MS
Dioumaev, AK
Lewis, JR
机构
[1] Biochemistry Department, Univ. of Virginia Hlth. Sci. Center, Charlottesville
[2] Department of Biochemistry, Univ. of Virginia School of Medicine, Box 440, Charlottesville
关键词
D O I
10.1016/S0006-3495(96)79637-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The proton-pumping mechanism of bacteriorhodopsin is dependent on a photolysis-induced transfer of a proton from the retinylidene Schiff base chromophore to the aspartate-85 counterion. Up until now, this transfer was ascribed to a >7-unit decrease in the pK(a) of the protonated Schiff base caused by photoisomerization of the retinal. However, a comparably large increase in the pK, of the Asp-85 acceptor also plays a role, as we show here with infrared measurements. Furthermore, the shifted vibrational frequency of the Asp-85 COOH group indicates a transient drop in the effective dielectric constant around Asp-85 to similar to 2 in the M photointermediate. This dielectric decrease would cause a >40 kJ-mol(-1) increase in free energy of the anionic form of Asp-85, fully explaining the observed pK, increase. An analogous photolysis-induced destabilization of the Schiff base counterion could initiate anion transport in the related protein, halorhodopsin, in which aspartate-85 is replaced by Cl- and the Schiff base proton is consequently never transferred.
引用
收藏
页码:939 / 947
页数:9
相关论文
共 45 条
[1]   ELECTROSTATIC CALCULATIONS OF THE PKA VALUES OF IONIZABLE GROUPS IN BACTERIORHODOPSIN [J].
BASHFORD, D ;
GERWERT, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (02) :473-486
[2]  
BELLAMY LJ, 1968, INFRARED SPECTRA COM, V2
[3]  
BOUSCHE O, 1991, J BIOL CHEM, V266, P11063
[4]   VIBRATIONAL SPECTROSCOPY OF BACTERIORHODOPSIN MUTANTS - LIGHT-DRIVEN PROTON TRANSPORT INVOLVES PROTONATION CHANGES OF ASPARTIC-ACID RESIDUE-85, RESIDUE-96, AND RESIDUE-212 [J].
BRAIMAN, MS ;
MOGI, T ;
MARTI, T ;
STERN, LJ ;
KHORANA, HG ;
ROTHSCHILD, KJ .
BIOCHEMISTRY, 1988, 27 (23) :8516-8520
[5]   PROTEIN DYNAMICS IN THE BACTERIORHODOPSIN PHOTOCYCLE - SUBMILLISECOND FOURIER-TRANSFORM INFRARED-SPECTRA OF THE L-PHOTOINTERMEDIATES, M-PHOTOINTERMEDIATES, AND N-PHOTOINTERMEDIATES [J].
BRAIMAN, MS ;
BOUSCHE, O ;
ROTHSCHILD, KJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (06) :2388-2392
[6]   THE RETINAL SCHIFF BASE-COUNTERION COMPLEX OF BACTERIORHODOPSIN - CHANGED GEOMETRY DURING THE PHOTOCYCLE IS A CAUSE OF PROTON-TRANSFER TO ASPARTATE-85 [J].
BROWN, LS ;
GAT, Y ;
SHEVES, M ;
YAMAZAKI, Y ;
MAEDA, A ;
NEEDLEMAN, R ;
LANYI, JK .
BIOCHEMISTRY, 1994, 33 (40) :12001-12011
[7]   ESTIMATED ACID DISSOCIATION-CONSTANTS OF THE SCHIFF-BASE, ASP-85, AND ARG-82 DURING THE BACTERIORHODOPSIN PHOTOCYCLE [J].
BROWN, LS ;
BONET, L ;
NEEDLEMAN, R ;
LANYI, JK .
BIOPHYSICAL JOURNAL, 1993, 65 (01) :124-130
[8]   PROTON-TRANSFER FROM ASP-96 TO THE BACTERIORHODOPSIN SCHIFF-BASE IS CAUSED BY A DECREASE OF THE PK(A) OF ASP-96 WHICH FOLLOWS A PROTEIN BACKBONE CONFORMATIONAL CHANGE [J].
CAO, Y ;
VARO, G ;
KLINGER, AL ;
CZAJKOWSKY, DM ;
BRAIMAN, MS ;
NEEDLEMAN, R ;
LANYI, JK .
BIOCHEMISTRY, 1993, 32 (08) :1981-1990
[9]   KINETIC-ANALYSIS OF TIME-RESOLVED INFRARED DIFFERENCE SPECTRA OF THE L-INTERMEDIATES AND M-INTERMEDIATES OF BACTERIORHODOPSIN [J].
CHEN, WG ;
BRAIMAN, MS .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1991, 54 (06) :905-910
[10]   SOLVENT EFFECTS IN INFRARED SPECTRA OF CARBOXYLIC ACIDS [J].
COLLINGS, AJ ;
MORGAN, KJ .
JOURNAL OF THE CHEMICAL SOCIETY, 1963, :3437-&