pH-Degradable Mannosylated Nanogels for Dendritic Cell Targeting

被引:68
作者
De Coen, Ruben [1 ]
Vanparijs, Nane [1 ]
Risseeuw, Martijn D. P. [1 ]
Lybaert, Lien [1 ]
Louage, Benoit [1 ]
De Koker, Stefaan [2 ]
Kumar, Vimal [2 ]
Grooten, Johan [2 ]
Taylor, Leeanne [3 ]
Ayres, Neil [3 ]
Van Calenbergh, Serge [1 ]
Nuhn, Lutz [1 ]
De Geest, Bruno G. [1 ]
机构
[1] Univ Ghent, Dept Pharmaceut, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Biomed Mol Biol, B-9000 Ghent, Belgium
[3] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA
关键词
MANNOSE RECEPTOR; RAFT POLYMERIZATION; SYNTHETIC VACCINES; DC-SIGN; POLYMERS; IMMUNITY; LECTIN; NANOPARTICLES; GLYCOPOLYMERS; ACTIVATION;
D O I
10.1021/acs.biomac.6b00685
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report on the design of glycosylated nanogels via core-cross linking of amphiphilic non-water-soluble block copolymers composed of an acetylated glycosylated block and a pentafluorophenyl (PFP) activated ester block prepared by reversible addition fragmentation (RAFT) polymerization. Self-assembly, pH-sensitive core-cross-linking, and removal of remaining PFP esters and protecting groups are achieved in one pot and yield fully hydrated sub-100 nm nanogels. Using cell subsets that exhibit high and low expression of the mannose receptor (MR) under conditions that suppress active endocytosis, we show that mannosylated but not galactosylated nanogels can efficiently target the MR that is expressed on the cell surface of primary dendritic cells (DCs). These nanogels hold promise for immunological applications involving DCs and macrophage subsets.
引用
收藏
页码:2479 / 2488
页数:10
相关论文
共 61 条
[1]   Influence of preparation procedure on polymer composition:: synthesis and characterisation of polymethacrylates bearing β-D-glucopyranoside and β-D-galactopyranoside residues [J].
Ambrosi, M ;
Batsanov, AS ;
Cameron, NR ;
Davis, BG ;
Howard, JAK ;
Hunter, R .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 2002, Royal Society of Chemistry (01) :45-52
[2]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[3]   The Glycopolymer Code: Synthesis of Glycopolymers and Multivalent Carbohydrate-Lectin Interactions [J].
Becer, C. Remzi .
MACROMOLECULAR RAPID COMMUNICATIONS, 2012, 33 (09) :742-752
[4]   High-Affinity Glycopolymer Binding to Human DC-SIGN and Disruption of DC-SIGN Interactions with HIV Envelope Glycoprotein [J].
Becer, C. Remzi ;
Gibson, Matthew I. ;
Geng, Jin ;
Ilyas, Rebecca ;
Wallis, Russell ;
Mitchell, Daniel A. ;
Haddleton, David M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (43) :15130-15132
[5]   Chemical Lectinology: Tools for Probing the Ligands and Dynamics of Mammalian Lectins In Vivo [J].
Belardi, Brian ;
Bertozzi, Carolyn R. .
CHEMISTRY & BIOLOGY, 2015, 22 (08) :983-993
[6]   Acid-degradable polymers for drug delivery: a decade of innovation [J].
Binauld, Sandra ;
Stenzel, Martina H. .
CHEMICAL COMMUNICATIONS, 2013, 49 (21) :2082-2102
[7]   Bioapplications of RAFT Polymerization [J].
Boyer, Cyrille ;
Bulmus, Volga ;
Davis, Thomas P. ;
Ladmiral, Vincent ;
Liu, Jingquan ;
Perrier, Sebastien .
CHEMICAL REVIEWS, 2009, 109 (11) :5402-5436
[8]   One-pot synthesis and biofunctionalization of glycopolymers via RAFT polymerization and thiol-ene reactions [J].
Boyer, Cyrille ;
Davis, Thomas P. .
CHEMICAL COMMUNICATIONS, 2009, (40) :6029-6031
[9]   Efficient Usage of Thiocarbonates for Both the Production and the Biofunctionalization of Polymers [J].
Boyer, Cyrille ;
Bulmus, Volga ;
Davis, Thomas P. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (07) :493-497
[10]   Endocytosis at the nanoscale [J].
Canton, Irene ;
Battaglia, Giuseppe .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) :2718-2739