Recent progress in the research of external Al detoxification in higher plants: a minireview

被引:148
作者
Ma, JF [1 ]
Furukawa, J [1 ]
机构
[1] Kagawa Univ, Fac Agr, Miki, Kagawa 7610795, Japan
关键词
aluminum; resistance; organic acid anion; transgenic plant; quantitative trait loci;
D O I
10.1016/S0162-0134(03)00245-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aluminum (Al) is highly toxic to plant growth. The toxicity is characterized by rapid inhibition of root elongation. However, some plant species and cultivars have evolved some mechanisms for detoxifying Al both internally and externally. In this review, the recent progress made in the research of external detoxification of Al is described. Accumulating evidence has shown that organic acids play an important role in the detoxification of Al. Some plant species and cultivars respond to Al by secreting citrate, malate or oxalate from the roots. Recently, the anion channel of malate and citrate in the plasma membrane has been characterized and a gene encoding the malate channel has been cloned. The metabolism of organic acids seems to be poorly correlated with the Al-induced secretion of organic acid anions. A number of QTLs (quantitative trait loci) for Al resistance have been identified in rice, Arabidopsis, and other species. Transgenic plants with enhanced resistance to Al have also been reported, but introduction of multiple genes may be required to gain high Al resistance in future. (C) 2003 Published by Elsevier Inc.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 49 条
[1]   Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review [J].
Barcelo, J ;
Poschenrieder, C .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2002, 48 (01) :75-92
[2]  
Basu U, 2001, PLANT CELL ENVIRON, V24, P1269, DOI 10.1046/j.0016-8025.2001.00783.x
[3]   EFFECT OF ALUMINUM ON LIPID-PEROXIDATION, SUPEROXIDE-DISMUTASE, CATALASE, AND PEROXIDASE-ACTIVITIES IN ROOT-TIPS OF SOYBEAN (GLYCINE-MAX) [J].
CAKMAK, I ;
HORST, WJ .
PHYSIOLOGIA PLANTARUM, 1991, 83 (03) :463-468
[4]   Aluminum tolerance in transgenic plants by alteration of citrate synthesis [J].
delaFuente, JM ;
RamirezRodriguez, V ;
CabreraPonce, JL ;
HerreraEstrella, L .
SCIENCE, 1997, 276 (5318) :1566-1568
[5]   ALUMINUM TOLERANCE IN WHEAT (TRITICUM-AESTIVUM L) .2. ALUMINUM-STIMULATED EXCRETION OF MALIC-ACID FROM ROOT APICES [J].
DELHAIZE, E ;
RYAN, PR ;
RANDALL, PJ .
PLANT PHYSIOLOGY, 1993, 103 (03) :695-702
[6]   Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux [J].
Delhaize, E ;
Hebb, DM ;
Ryan, PR .
PLANT PHYSIOLOGY, 2001, 125 (04) :2059-2067
[7]   Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress [J].
Ezaki, B ;
Gardner, RC ;
Ezaki, Y ;
Matsumoto, H .
PLANT PHYSIOLOGY, 2000, 122 (03) :657-665
[8]   PHYSIOLOGY OF METAL TOXICITY IN PLANTS [J].
FOY, CD ;
CHANEY, RL ;
WHITE, MC .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1978, 29 :511-566
[9]   Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.) [J].
Gallego, FJ ;
Calles, B ;
Benito, C .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (07) :1104-1109
[10]  
HAYES JE, 2003, IN PRESS J EXP BOT