Noninvasive biophotonic imaging for studies of infectious disease

被引:109
作者
Andreu, Nuria [2 ]
Zelmer, Andrea [3 ]
Wiles, Siouxsie [1 ,2 ]
机构
[1] Univ Auckland, Dept Mol Med & Pathol, Auckland 1142, New Zealand
[2] Univ London Imperial Coll Sci Technol & Med, Dept Med, London, England
[3] London Sch Hyg & Trop Med, Dept Infect & Trop Dis, London WC1, England
基金
英国国家替代、减少和改良动物研究中心;
关键词
biophotonic imaging; infectious disease; bioluminescence; fluorescence; in vivo; luciferase; infection; NONTYPABLE HAEMOPHILUS-INFLUENZAE; GREEN FLUORESCENT PROTEIN; SIMPLEX-VIRUS TYPE-1; BIOLUMINESCENT ESCHERICHIA-COLI; TOXOPLASMA-GONDII INFECTION; LUCIFERASE REPORTER SYSTEM; MONITORING IN-VIVO; NF-KAPPA-B; GENE-EXPRESSION; STAPHYLOCOCCUS-AUREUS;
D O I
10.1111/j.1574-6976.2010.00252.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
According to World Health Organization estimates, infectious organisms are responsible for approximately one in four deaths worldwide. Animal models play an essential role in the development of vaccines and therapeutic agents but large numbers of animals are required to obtain quantitative microbiological data by tissue sampling. Biophotonic imaging (BPI) is a highly sensitive, nontoxic technique based on the detection of visible light, produced by luciferase-catalysed reactions (bioluminescence) or by excitation of fluorescent molecules, using sensitive photon detectors. The development of bioluminescent/fluorescent microorganisms therefore allows the real-time noninvasive detection of microorganisms within intact living animals. Multiple imaging of the same animal throughout an experiment allows disease progression to be followed with extreme accuracy, reducing the number of animals required to yield statistically meaningful data. In the study of infectious disease, the use of BPI is becoming widespread due to the novel insights it can provide into established models, as well as the impact of the technique on two of the guiding principles of using animals in research, namely reduction and refinement. Here, we review the technology of BPI, from the instrumentation through to the generation of a photonic signal, and illustrate how the technique is shedding light on infection dynamics in vivo.
引用
收藏
页码:360 / 394
页数:35
相关论文
共 259 条
  • [1] Diversity and Evolution of Coral Fluorescent Proteins
    Alieva, Naila O.
    Konzen, Karen A.
    Field, Steven F.
    Meleshkevitch, Ella A.
    Hunt, Marguerite E.
    Beltran-Ramirez, Victor
    Miller, David J.
    Wiedenmann, Joerg
    Salih, Anya
    Matz, Mikhail V.
    [J]. PLOS ONE, 2008, 3 (07):
  • [2] A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria
    Amante, Fiona H.
    Stanley, Amanda C.
    Randall, Louise M.
    Zhou, Yonghong
    Haque, Ashraful
    McSweeney, Karli
    Waters, Andrew P.
    Janse, Chris J.
    Good, Michael F.
    Hill, Geoff R.
    Engwerda, Christian R.
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2007, 171 (02) : 548 - 559
  • [3] Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission
    Ando, Yoriko
    Niwa, Kazuki
    Yamada, Nobuyuki
    Enomot, Toshiteru
    Irie, Tsutomu
    Kubota, Hidehiro
    Ohmiya, Yoshihiro
    Akiyama, Hidefumi
    [J]. NATURE PHOTONICS, 2008, 2 (01) : 44 - 47
  • [4] Optimisation of Bioluminescent Reporters for Use with Mycobacteria
    Andreu, Nuria
    Zelmer, Andrea
    Fletcher, Taryn
    Elkington, Paul T.
    Ward, Theresa H.
    Ripoll, Jorge
    Parish, Tanya
    Bancroft, Gregory J.
    Schaible, Ulrich
    Robertson, Brian D.
    Wiles, Siouxsie
    [J]. PLOS ONE, 2010, 5 (05):
  • [5] Effects of isoflurane on bacterial growth
    Asehnoune, K
    Cruaud, P
    Paries, J
    Gorce, P
    Pourriat, JL
    [J]. EUROPEAN JOURNAL OF ANAESTHESIOLOGY, 2000, 17 (05) : 289 - 294
  • [6] Resistance to intestinal Entamoeba histolytica infection is conferred by innate immunity and Gr-1+ cells
    Asgharpour, A
    Gilchrist, C
    Baba, D
    Hamano, S
    Houpt, E
    [J]. INFECTION AND IMMUNITY, 2005, 73 (08) : 4522 - 4529
  • [7] CLONING OF THE LUCIFERASE STRUCTURAL GENES FROM VIBRIO-HARVEYI AND EXPRESSION OF BIOLUMINESCENCE IN ESCHERICHIA-COLI
    BALDWIN, TO
    BERENDS, T
    BUNCH, TA
    HOLZMAN, TF
    RAUSCH, SK
    SHAMANSKY, L
    TREAT, ML
    ZIEGLER, MM
    [J]. BIOCHEMISTRY, 1984, 23 (16) : 3663 - 3667
  • [8] The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen
    Baughn, AD
    Malamy, MH
    [J]. NATURE, 2004, 427 (6973) : 441 - 444
  • [9] Quantum Dots for In Vivo Small-Animal Imaging
    Bentolila, Laurent A.
    Ebenstein, Yuval
    Weiss, Shimon
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (04) : 493 - 496
  • [10] Optical imaging of Renilla luciferase reporter gene expression in living mice
    Bhaumik, S
    Gambhir, SS
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) : 377 - 382