Viscous fingering patterns in ferrofluids

被引:6
作者
Widom, M [1 ]
Miranda, JA
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[2] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
关键词
ferrofluid; pattern formation; mode coupling; Saffman-Taylor instability;
D O I
10.1023/B:JOSS.0000033156.44251.15
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Viscous fingering occurs in the now of two immiscible, viscous fluids between the plates of a Hele-Shaw cell. Due to pressure gradients or gravity, the initially planar interface separating the two fluids undergoes a Saffman-Taylor instability and develops fingerlike structures. When one of the fluids is a ferrofluid and a perpendicular magnetic Field is applied, the labyrinthine instability supplements the usual viscous fingering instability, resulting in visually striking, complex patterns. We consider this problem in a rectangular now geometry using a perturbative mode-coupling analysis. We deduce two general results: viscosity contrast between the fluids drives interface asymmetry, with no contribution from magnetic forces; magnetic repulsion within the ferrofluid generates finger tip-splitting, which is absent in the rectangular geometry for ordinary fluids.
引用
收藏
页码:411 / 426
页数:16
相关论文
共 14 条
[1]   VISCOUS FLOWS IN 2 DIMENSIONS [J].
BENSIMON, D ;
KADANOFF, LP ;
LIANG, SD ;
SHRAIMAN, BI ;
TANG, C .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :977-999
[2]  
CEBERS A, 1981, MAGNETOHYDRODYNAMICS, V17, P113
[3]  
DUBROVIN BA, 1984, MODERN GEOMETRY ME 1
[4]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
[5]   HYDRODYNAMICS OF FINGERING INSTABILITIES IN DIPOLAR FLUIDS [J].
JACKSON, DP ;
GOLDSTEIN, RE ;
CEBERS, AO .
PHYSICAL REVIEW E, 1994, 50 (01) :298-307
[6]   EXPERIMENTAL PERTURBATIONS TO SAFFMAN-TAYLOR FLOW [J].
MCCLOUD, KV ;
MAHER, JV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 260 (03) :139-185
[7]   Radial fingering in a Hele-Shaw cell: a weakly nonlinear analysis [J].
Miranda, JA ;
Widom, M .
PHYSICA D, 1998, 120 (3-4) :315-328
[8]   Weakly nonlinear investigation of the Saffman-Taylor problem in a rectangular Hele-Shaw cell [J].
Miranda, JA ;
Widom, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (09) :931-949
[9]  
PERZYNSKI R, UNPUB
[10]  
Rosensweig R. E., 2013, FERROHYDRODYNAMICS