Mutational analysis of subunit G (Vma10p) of the yeast vacuolar H+-ATPase

被引:47
作者
Charsky, CMH [1 ]
Schumann, NJ [1 ]
Kane, PM [1 ]
机构
[1] SUNY, Upstate Med Univ, Dept Biochem & Mol Biol, Syracuse, NY 13210 USA
关键词
D O I
10.1074/jbc.M006640200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The G subunit of V-ATPases is a soluble subunit that shows homology with the b subunit of F-ATPases and may be part of the "stator'' stalk connecting the peripheral V-1 and membrane V-0 sectors. When the N-terminal half of the G subunit is modeled as an or helix, most of the conserved residues fall on one face of the helix (Hunt, I. E., and Bowman, B. J. (1997) J. Bioenerg. Biomembr. 29, 533-540). We probed the function of this region by site-directed mutagenesis of the yeast VMA10 gene. Stable Gr subunits were produced in the presence of Y46A and K55A mutations, but subunit E was destabilized, resulting in loss of the V-ATPase assembly. Mutations E14A and K50A allowed wild-type growth and assembly of V-ATPase complexes, but the complexes formed were unstable. Mutations R25A and R25L stabilized V-ATPase complexes relative to wild-type and partially inhibited disassembly of V, from V, in response to glucose deprivation even though the mutant enzymes were fully active. A 2-amino acid deletion in the middle of the predicted N-terminal helix (Delta Q29D30) allowed assembly of a functional V-ATPase. The results indicate that, although the N-terminal half of the G subunit is essential for V-ATPase activity, either this region is not a rigid helix or the presence of a continuous, conserved face of the helix is not essential.
引用
收藏
页码:37232 / 37239
页数:8
相关论文
共 50 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   Biological motors - Connecting stalks in V-type ATPase [J].
Boekema, EJ ;
van Breemen, JFL ;
Brisson, A ;
Ubbink-Kok, T ;
Konings, WN ;
Lolkema, JS .
NATURE, 1999, 401 (6748) :37-38
[3]   Visualization of a peripheral stalk in V-type ATPase: Evidence for the stator structure essential to rotational catalysis [J].
Boekema, EJ ;
Ubbink-Kok, T ;
Lolkema, JS ;
Brisson, A ;
Konings, WN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14291-14293
[4]   Direct visualisation of conformational changes in EF0F1 by electron microscopy [J].
Böttcher, B ;
Bertsche, I ;
Reuter, R ;
Gräber, P .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (02) :449-457
[5]  
DOHERTY RD, 1993, J BIOL CHEM, V268, P16845
[6]   INHIBITORY EFFECT OF MODIFIED BAFILOMYCINS AND CONCANAMYCINS ON P-TYPE AND V-TYPE ADENOSINE-TRIPHOSPHATASES [J].
DROSE, S ;
BINDSEIL, KU ;
BOWMAN, EJ ;
SIEBERS, A ;
ZEECK, A ;
ALTENDORF, K .
BIOCHEMISTRY, 1993, 32 (15) :3902-3906
[7]   ROTATION OF SUBUNITS DURING CATALYSIS BY ESCHERICHIA-COLI F1-ATPASE [J].
DUNCAN, TM ;
BULYGIN, VV ;
ZHOU, Y ;
HUTCHEON, ML ;
CROSS, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :10964-10968
[8]   The second stalk of Escherichia coli ATP synthase [J].
Dunn, SD ;
McLachlin, DT ;
Revington, M .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1458 (2-3) :356-363
[9]  
DUNN SD, 1992, J BIOL CHEM, V267, P7630
[10]  
ELBLE R, 1992, BIOTECHNIQUES, V13, P18