Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures

被引:69
作者
Inouye, S
Katsuki, K
Izu, H
Fujimoto, M
Sugahara, K
Yamada, S
Shinkai, Y
Oka, Y
Katoh, Y
Nakai, A
机构
[1] Yamaguchi Univ, Sch Med, Dept Biochem & Mol Biol, Ube, Yamaguchi 7558505, Japan
[2] Yamaguchi Univ, Sch Med, Dept Internal Med 3, Ube, Yamaguchi 7558505, Japan
[3] Kyoto Univ, Inst Virus Res, Dept Cell Biol, Kyoto 6068507, Japan
关键词
D O I
10.1128/MCB.23.16.5882-5895.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heat shock response, which is characterized by the induction of a set of heat shock proteins, is essential for induced thermotolerance and is regulated by heat shock transcription factors (HSFs). Curiously, HSF1 is essential for heat shock response in mammals, whereas in avian HSF3, an avian-specific factor is required for the burst activation of heat shock genes. Amino acid sequences of chicken HSF1 are highly conserved with human HSF1, but those of HSF3 diverge significantly. Here, we demonstrated that chicken HSF1 lost the ability to activate heat shock genes through the amino-terminal domain containing an alanine-rich sequence and a DNA-binding domain. Surprisingly, chicken and human HSF1 but not HSF3 possess a novel function that protects against a single exposure to mild heat shock, which is not mediated through the activation of heat shock genes. Overexpression of HSF1 mutants that could not bind to DNA did not restore the susceptibility to cell death in HSF1-null cells, suggesting that the new protective role of HSF1 is mediated through regulation of unknown target genes other than heat shock genes. These results uncover a novel role of vertebrate HSF1, which has been masked under the roles of heat shock proteins.
引用
收藏
页码:5882 / 5895
页数:14
相关论文
共 48 条
[1]   CLONING AND EXPRESSION OF THE MOUSE PGK-1 GENE AND THE NUCLEOTIDE-SEQUENCE OF ITS PROMOTER [J].
ADRA, CN ;
BOER, PH ;
MCBURNEY, MW .
GENE, 1987, 60 (01) :65-74
[2]   The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress [J].
Ahn, SG ;
Liu, PCC ;
Klyachko, K ;
Morimoto, RI ;
Thiele, DJ .
GENES & DEVELOPMENT, 2001, 15 (16) :2134-2145
[3]   BRAIN TEMPERATURE AS RELATED TO GROSS MOTOR ACTIVITY IN UNANESTHETIZED CHICKEN [J].
ASCHOFF, J ;
SAINTPAU.UV .
PHYSIOLOGY & BEHAVIOR, 1973, 10 (03) :529-533
[4]   ACTIVATION OF HUMAN HEAT-SHOCK GENES IS ACCOMPANIED BY OLIGOMERIZATION, MODIFICATION, AND RAPID TRANSLOCATION OF HEAT-SHOCK TRANSCRIPTION FACTOR HSF1 [J].
BALER, R ;
DAHL, G ;
VOELLMY, R .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (04) :2486-2496
[5]   Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J].
Beere, HM ;
Wolf, BB ;
Cain, K ;
Mosser, DD ;
Mahboubi, A ;
Kuwana, T ;
Tailor, P ;
Morimoto, RI ;
Cohen, GM ;
Green, DR .
NATURE CELL BIOLOGY, 2000, 2 (08) :469-475
[6]   Hsp27 negatively regulates cell death by interacting with cytochrome c [J].
Bruey, JM ;
Ducasse, C ;
Bonniaud, P ;
Ravagnan, L ;
Susin, SA ;
Diaz-Latoud, C ;
Gurbuxani, S ;
Arrigo, AP ;
Kroemer, G ;
Solary, E ;
Garrido, C .
NATURE CELL BIOLOGY, 2000, 2 (09) :645-652
[7]   Embryonic development -: Maternal effect of Hsf1 on reproductive success [J].
Christians, E ;
Davis, AA ;
Thomas, SD ;
Benjamin, IJ .
NATURE, 2000, 407 (6805) :693-694
[8]   MOLECULAR-CLONING AND EXPRESSION OF A HEXAMERIC DROSOPHILA HEAT-SHOCK FACTOR SUBJECT TO NEGATIVE REGULATION [J].
CLOS, J ;
WESTWOOD, JT ;
BECKER, PB ;
WILSON, S ;
LAMBERT, K ;
WU, C .
CELL, 1990, 63 (05) :1085-1097
[9]   Evolution of a transcriptional repression domain in an insect Hox protein [J].
Galant, R ;
Carroll, SB .
NATURE, 2002, 415 (6874) :910-913
[10]   Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins [J].
Glover, JR ;
Lindquist, S .
CELL, 1998, 94 (01) :73-82