DNA replication and progression through S phase

被引:156
作者
Takeda, DY
Dutta, A [1 ]
机构
[1] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Univ Virginia, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
关键词
cell cycle; S phase; DNA replication;
D O I
10.1038/sj.onc.1208616
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
引用
收藏
页码:2827 / 2843
页数:17
相关论文
共 261 条
[1]   A globular complex formation by Nda1 and the other five members of the MCM protein family in fission yeast [J].
Adachi, Y ;
Usukura, J ;
Yanagida, M .
GENES TO CELLS, 1997, 2 (07) :467-479
[2]   Chromatin regulates origin activity in Drosophila follicle cells [J].
Aggarwal, BD ;
Calvi, BR .
NATURE, 2004, 430 (6997) :372-376
[3]   Mrc1 transduces signals of DNA replication stress to activate Rad53 [J].
Alcasabas, AA ;
Osborn, AJ ;
Bachant, J ;
Hu, FH ;
Werler, PJH ;
Bousset, K ;
Furuya, K ;
Diffley, JFX ;
Carr, AM ;
Elledge, SJ .
NATURE CELL BIOLOGY, 2001, 3 (11) :958-965
[4]   Cdc6 chromatin affinity is unaffected by serine-54 phosphorylation, S-phase progression, and overexpression of cyclin A [J].
Alexandrow, MG ;
Hamlin, JL .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (04) :1614-1627
[5]   Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing [J].
Anglana, M ;
Apiou, F ;
Bensimon, A ;
Debatisse, M .
CELL, 2003, 114 (03) :385-394
[6]   Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication [J].
Aparicio, OM ;
Stout, AM ;
Bell, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9130-9135
[7]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[8]   DPB11, WHICH INTERACTS WITH DNA-POLYMERASE II(EPSILON) IN SACCHAROMYCES-CEREVISIAE, HAS A DUAL ROLE IN S-PHASE PROGRESSION AND AT A CELL-CYCLE CHECKPOINT [J].
ARAKI, H ;
LEEM, SH ;
PHONGDARA, A ;
SUGINO, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11791-11795
[9]   Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis [J].
Andrea Ballabeni ;
Marina Melixetian ;
Raffaella Zamponi ;
Laura Masiero ;
Federica Marinoni ;
Kristian Helin .
The EMBO Journal, 2004, 23 (15) :3122-3132
[10]   DNA replication in eukaryotic cells [J].
Bell, SP ;
Dutta, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :333-374