The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein α-subunit GPA1 and regulates seed germination and early seedling development

被引:127
作者
Lapik, YR [1 ]
Kaufman, LS [1 ]
机构
[1] Univ Illinois, Mol Biol Lab, Dept Biol Sci, Chicago, IL 60607 USA
关键词
D O I
10.1105/tpc.011890
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heterotrimeric G proteins are implicated in diverse signaling processes in plants, but the molecular mechanisms of their function are largely unknown. Finding G protein effectors and regulatory proteins can help in understanding the roles of these signal transduction proteins in plants. A yeast two-hybrid screen was performed to search for proteins that interact with Arabidopsis G protein alpha-subunit (GPA1). One of the identified GPA1-interacting proteins is the cupin-domain protein AtPirin1. Pirin is a recently defined protein found because of its ability to interact with a CCAAT box binding transcription factor. The GPA1-AtPirin1 interaction was confirmed in an in vitro binding assay. We characterized two atpirin1 T-DNA insertional mutants and established that they display a set of phenotypes similar to those of gpa1 mutants, including reduced germination levels in the absence of stratification and an abscisic acid-imposed delay in germination and early seedling development. These data indicate that AtPirin1 likely functions immediately downstream of GPA1 in regulating seed germination and early seedling development.
引用
收藏
页码:1578 / 1590
页数:13
相关论文
共 54 条
[1]   Nitcotiana tabacum cDNAs encoding α and β subunits of a heterotrimeric GTP-binding protein isolated from hairy root tissues [J].
Ando, S ;
Takumi, S ;
Ueda, Y ;
Ueda, T ;
Mori, N ;
Nakamura, C .
GENES & GENETIC SYSTEMS, 2000, 75 (04) :211-221
[2]   IDENTIFICATION OF NADPH-PROTOCHLOROPHYLLIDE OXIDOREDUCTASE-A AND OXIDOREDUCTASE-B - A BRANCHED PATHWAY FOR LIGHT-DEPENDENT CHLOROPHYLL BIOSYNTHESIS IN ARABIDOPSIS-THALIANA [J].
ARMSTRONG, GA ;
RUNGE, S ;
FRICK, G ;
SPERLING, U ;
APEL, K .
PLANT PHYSIOLOGY, 1995, 108 (04) :1505-1517
[3]   Heterotrimeric and unconventional GTP binding proteins in plant cell signaling [J].
Assmann, SM .
PLANT CELL, 2002, 14 (SUPPL.) :S355-S373
[4]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[5]   Genetic analysis of ABA signal transduction pathways [J].
Bonetta, D ;
McCourt, P .
TRENDS IN PLANT SCIENCE, 1998, 3 (06) :231-235
[6]   Regulation of abscisic acid-induced transcription [J].
Busk, PK ;
Pagès, M .
PLANT MOLECULAR BIOLOGY, 1998, 37 (03) :425-435
[7]   Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors [J].
Clark, KL ;
Larsen, PB ;
Wang, XX ;
Chang, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5401-5406
[8]   GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering [J].
Colucci, G ;
Apone, F ;
Alyeshmerni, N ;
Chalmers, D ;
Chrispeels, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4736-4741
[9]   GENETIC AND ENVIRONMENTAL-CONTROL OF FLOWERING TIME ARABIDOPSIS [J].
COUPLAND, G .
TRENDS IN GENETICS, 1995, 11 (10) :393-397
[10]   A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis [J].
Cutler, S ;
Ghassemian, M ;
Bonetta, D ;
Cooney, S ;
McCourt, P .
SCIENCE, 1996, 273 (5279) :1239-1241