AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model

被引:53
作者
Gerteisen, Dietmar [1 ]
Hakenjos, Alex [1 ]
Schumacher, Juergen O. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
关键词
PEM fuel cell; modelling; agglomerate model; ac impedance spectroscopy; oxygen reduction reaction; Tafel slope;
D O I
10.1016/j.jpowsour.2007.04.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O-2, N-2, water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm x 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of lambda(min). The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 356
页数:11
相关论文
共 19 条
[1]   MODIFIED FLOODED SPHERICAL AGGLOMERATE MODEL FOR GAS-DIFFUSION ELECTRODES IN ALKALINE FUEL-CELLS [J].
ALSALEH, MA ;
GULTEKIN, S ;
SLEEMURRAHMAN ;
ALZAKRI, A .
JOURNAL OF POWER SOURCES, 1995, 55 (01) :33-39
[2]   Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion® [J].
Antoine, O ;
Bultel, Y ;
Durand, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :85-94
[3]   AC IMPEDANCE SPECTROSCOPY OF POROUS GAS-DIFFUSION ELECTRODE IN SULFURIC-ACID [J].
ARICO, AS ;
ALDERUCCI, V ;
ANTONUCCI, V ;
FERRARA, S ;
RECUPERO, V ;
GIORDANO, N ;
KINOSHITA, K .
ELECTROCHIMICA ACTA, 1992, 37 (03) :523-529
[4]  
Atkins PW, 2001, PHYS CHEM
[5]  
Cleghorn S., 2003, Handbook of Fuel Cells-Fundamentals, Technology and Applications, VVol. 3, pp. 566
[6]   ELECTRODE KINETICS OF OXYGEN REDUCTION ON OXIDE-FREE PLATINUM ELECTRODES [J].
DAMJANOVIC, A ;
BRUSIC, V .
ELECTROCHIMICA ACTA, 1967, 12 (06) :615-+
[7]   Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells [J].
Eikerling, M ;
Kornyshev, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02) :107-123
[8]   MECHANISM OF OPERATION OF TEFLON-BONDED GAS DIFFUSION ELECTRODE - A MATHEMATICAL MODEL [J].
GINER, J ;
HUNTER, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (08) :1124-&
[9]   Investigation of mass-transport limitations in the solid polymer fuel cell cathode - II. Experimental [J].
Ihonen, J ;
Jaouen, F ;
Lindbergh, G ;
Lundblad, A ;
Sundholm, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A448-A454
[10]   Transient techniques for investigating mass-transport limitations in gas diffusion electrodes - I. Modeling the PEFC cathode [J].
Jaouen, F ;
Lindbergh, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1699-A1710