Statistical thermodynamics of membrane bending-mediated protein-protein attractions

被引:50
作者
Chou, T
Kim, KS
Oster, G
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Biomath, Los Angeles, CA 90095 USA
[2] Univ Cambridge, Dept Physiol, Cambridge CB3 9EW, England
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
基金
英国惠康基金; 美国国家科学基金会;
关键词
D O I
10.1016/S0006-3495(01)76086-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal's, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to a few times their typical radii. These forces can be attractive or repulsive, depending on the proteins' shape, height, contact angle with the bilayer, and a pre-existing local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular proteins. For flat membranes, bending rigidities of similar to 100k(B)T, moderate ellipticities, and large contact angle proteins, we find thermally averaged attractive interactions of order k(B)T. These interactions may play an important role in the intermediate stages of protein aggregation. Numerous biological processes where membrane bending-mediated interactions may be relevant are cited, and possible experiments are discussed.
引用
收藏
页码:1075 / 1087
页数:13
相关论文
共 36 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]   Tilted peptides: a motif for membrane destabilization (hypothesis) [J].
Brasseur, R .
MOLECULAR MEMBRANE BIOLOGY, 2000, 17 (01) :31-40
[3]   Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells [J].
Cho, MR ;
Knowles, DW ;
Smith, BL ;
Moulds, JJ ;
Agre, P ;
Mohandas, N ;
Golan, DE .
BIOPHYSICAL JOURNAL, 1999, 76 (02) :1136-1144
[4]  
DAN N, 1995, ISR J CHEM, V35, P37
[5]   CRYSTALLOGRAPHIC REFINEMENT AT 2.3-ANGSTROM RESOLUTION AND REFINED MODEL OF THE PHOTOSYNTHETIC REACTION-CENTER FROM RHODOPSEUDOMONAS-VIRIDIS [J].
DEISENHOFER, J ;
EPP, O ;
SINNING, I ;
MICHEL, H .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 246 (03) :429-457
[6]  
DIAMANT H, 1999, CONDMAT9910162
[7]  
Discher DE, 1996, BIOPHYS J, V71, P1680, DOI 10.1016/S0006-3495(96)79424-9
[8]   Long-range elastic forces between membrane inclusions in spherical vesicles [J].
Dommersnes, PG ;
Fournier, JB ;
Galatola, P .
EUROPHYSICS LETTERS, 1998, 42 (02) :233-238
[9]   N-body study of anisotropic membrane inclusions: Membrane mediated interactions and ordered aggregation [J].
Dommersnes, PG ;
Fournier, JB .
EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (01) :9-12
[10]   THE EFFECTS OF BILAYER THICKNESS AND TENSION ON GRAMICIDIN SINGLE-CHANNEL LIFETIME [J].
ELLIOTT, JR ;
NEEDHAM, D ;
DILGER, JP ;
HAYDON, DA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 735 (01) :95-103