Geometric approach for finding exact solutions to nonlinear partial differential equations

被引:5
作者
Kong, DX
Hu, HR
机构
[1] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
[2] Fudan Univ, Shanghai 200433, Peoples R China
关键词
D O I
10.1016/S0375-9601(98)00499-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stimulated by contact geometry, we establish a method for finding exact solutions to nonlinear partial differential equations by solving nonlinear partial differential equations with lower order. Within the present theoretical framework, some equations arising from physics, mechanics, engineering and geometry (such as the governing equations of vibrations of a nonlinear string; propagation of sound waves in a compressible fluid; surfaces with negative Gaussian curvature and so on) are investigated. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 29 条
[1]  
Ames W. F., 1968, International Journal of Non-Linear Mechanics, V3, P449, DOI 10.1016/0020-7462(68)90031-0
[2]  
Ames W. F., 1970, International Journal of Non-Linear Mechanics, V5, P413, DOI 10.1016/0020-7462(70)90004-1
[3]  
Ames W. F., 1970, INT J NONLIN MECH, V5, P605
[4]  
AMES WF, 1969, P 11 MIDW MECH C IOW
[5]  
Bluman G. W., 1974, APPL MATH SCI, V13
[6]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[7]   2 EXPLICIT SOLUTIONS IN A REDUCIBLE RELATIVISTIC SYSTEM [J].
CARBONARO, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :241-244
[8]  
Coulson C. A., 1955, WAVES
[9]  
COURANT R, 1962, METHOD MATH PHYSICS, V2
[10]  
Darboux G., 1894, LECON THEORIE GEN SU, V3