Drug discovery in the ubiquitin regulatory pathway

被引:50
作者
Wong, BR [1 ]
Parlati, F [1 ]
Qu, KB [1 ]
Demo, S [1 ]
Pray, T [1 ]
Huang, JI [1 ]
Payan, DG [1 ]
Bennett, MK [1 ]
机构
[1] Rigel Pharmaceut, San Francisco, CA 94080 USA
关键词
D O I
10.1016/S1359-6446(03)02780-6
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The ubiquitin system has been implicated in the pathogenesis of numerous disease states, including oncogenesis, inflammation, viral infection, CNS disorders and metabolic dysfunction. Ubiquitin conjugation and deconjugation to substrate proteins is carried out by multiple families of proteins, each with a defined role in the enzymatic cascade. This conjugation-deconjugation system parallels the kinase-phosphatase system in that both alter protein function by the addition and removal of post-translational modifiers. Our understanding of ubiquitin biology and strategies to interfere pharmacologically with the ubiquitin regulatory machinery is progressing rapidly. In light of increased interest in ubiquitin pathways as drug targets, we review the ubiquitin enzymatic cascades, highlighting therapeutic opportunities and enzymatic mechanisms. We also discuss the challenges of targeting this class of enzymes with small molecules, as well as current approaches and progress in drug discovery.
引用
收藏
页码:746 / 754
页数:9
相关论文
共 82 条
[1]   Lymphocyte-specific murine deubiquitinating enzymes induced by cytokines [J].
Baek, KH .
AMERICAN JOURNAL OF HEMATOLOGY, 2002, 71 (04) :340-345
[2]   Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation [J].
Bays, NW ;
Gardner, RG ;
Seelig, LP ;
Joazeiro, CA ;
Hampton, RY .
NATURE CELL BIOLOGY, 2001, 3 (01) :24-29
[3]  
BERLETH ES, 1992, J BIOL CHEM, V267, P16403
[4]   Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1 [J].
Bernier-Villamor, V ;
Sampson, DA ;
Matunis, MJ ;
Lima, CD .
CELL, 2002, 108 (03) :345-356
[5]   Identification of ubiquitin ligases required for skeletal muscle atrophy [J].
Bodine, SC ;
Latres, E ;
Baumhueter, S ;
Lai, VKM ;
Nunez, L ;
Clarke, BA ;
Poueymirou, WT ;
Panaro, FJ ;
Na, EQ ;
Dharmarajan, K ;
Pan, ZQ ;
Valenzuela, DM ;
DeChiara, TM ;
Stitt, TN ;
Yancopoulos, GD ;
Glass, DJ .
SCIENCE, 2001, 294 (5547) :1704-1708
[6]   Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme [J].
Borodovsky, A ;
Ovaa, H ;
Kolli, N ;
Gan-Erdene, T ;
Wilkinson, KD ;
Ploegh, HL ;
Kessler, BM .
CHEMISTRY & BIOLOGY, 2002, 9 (10) :1149-1159
[7]   A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division [J].
Cai, SY ;
Babbitt, RW ;
Marchesi, VT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :2828-2833
[8]   The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons [J].
Chen, YZ ;
McPhie, DL ;
Hirschberg, J ;
Neve, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :8929-8935
[9]   Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1 [J].
Cope, GA ;
Suh, GSB ;
Aravind, L ;
Schwarz, SE ;
Zipursky, SL ;
Koonin, EV ;
Deshaies, RJ .
SCIENCE, 2002, 298 (5593) :608-611
[10]   PHD domains and E3 ubiquitin ligases: viruses make the connection [J].
Coscoy, L ;
Ganem, D .
TRENDS IN CELL BIOLOGY, 2003, 13 (01) :7-12