Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness

被引:65
作者
Kim, BC
Soh, MS
Hong, SH
Furuya, M
Nam, HG [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol, Sch Environm Engn, Pohang 790784, South Korea
[3] Hitachi Ltd, Hitachi Adv Res Lab, Hatoyama, Saitama 3500395, Japan
[4] Plant Mol Biol & Biotechnol Res Ctr, Jinju 660701, South Korea
关键词
D O I
10.1046/j.1365-313X.1998.00179.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We previously reported a photomorphogenic mutation of Arabidopsis thaliana, shy2-1D, as a dominant suppressor of a hy2 mutation. Here, we report that shy2-1D confers various photo-responsive phenotypes in darkness and the dark phenotypes of the mutant are affected by phytochrome deficiency. Dark-grown seedlings of the mutant developed several photomorphogenic characteristics such as short hypocotyls, cotyledon expansion and opening, and partial differentiation of plastids. When grown further in darkness, the mutant plant underwent most of the developmental stages of a light-grown wild-type plant, including development of foliar leaves, an inflorescence stem with cauline leaves, and floral organs. In addition, two light-inducible genes, the nuclear-encoded CAB and the plastid-encoded PSBA genes, were highly :expressed in the dark-grown mutant seedlings. Furthermore, reduced gravitropism, a phytochrome-modulated response, was observed in the mutant hypocotyl in darkness. Thus, shy2-1D is one of the most pleiotropic photomorphogenic mutations identified so far. The results indicate that SHY2 may be a key component regulating photomorphogenesis in Arabidopsis. Surprisingly, double mutants of the shy2-1D mutant with the phytochrome-deficient mutants hy2, hy3(phyB-1) and fre1-1(phyA-201) showed reduced photomorphogenic response in darkness with a longer hypocotyl, a longer inflorescence stem, and a lower level expression of the CAB gene than the shy2-1D single mutant. These results showed that phytochromes function in darkness in the shy2-1D mutant background. The implications of these results are discussed.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 34 条
[1]   PHOTOPERIODISM IN PLANTS [J].
BORTHWICK, HA ;
HENDRICKS, SB .
SCIENCE, 1960, 132 (3435) :1223-1228
[2]   A FUSCA GENE OF ARABIDOPSIS ENCODES A NOVEL PROTEIN ESSENTIAL FOR PLANT DEVELOPMENT [J].
CASTLE, LA ;
MEINKE, DW .
PLANT CELL, 1994, 6 (01) :25-41
[3]   ARABIDOPSIS THALIANA MUTANT THAT DEVELOPS AS A LIGHT-GROWN PLANT IN THE ABSENCE OF LIGHT [J].
CHORY, J ;
PETO, C ;
FEINBAUM, R ;
PRATT, L ;
AUSUBEL, F .
CELL, 1989, 58 (05) :991-999
[4]   From seed germination to flowering, light controls plant development via the pigment phytochrome [J].
Chory, J ;
Catterjee, M ;
Cook, RK ;
Elich, T ;
Fankhauser, C ;
Li, J ;
Nagpal, P ;
Neff, M ;
Pepper, A ;
Poole, D ;
Reed, J ;
Vitart, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12066-12071
[5]   THE PHYTOCHROME APOPROTEIN FAMILY IN ARABIDOPSIS IS ENCODED BY 5 GENES - THE SEQUENCES AND EXPRESSION OF PHYD AND PHYE [J].
CLACK, T ;
MATHEWS, S ;
SHARROCK, RA .
PLANT MOLECULAR BIOLOGY, 1994, 25 (03) :413-427
[6]   COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN [J].
DENG, XW ;
MATSUI, M ;
WEI, N ;
WAGNER, D ;
CHU, AM ;
FELDMANN, KA ;
QUAIL, PH .
CELL, 1992, 71 (05) :791-801
[7]   COP1 - A REGULATORY LOCUS INVOLVED IN LIGHT-CONTROLLED DEVELOPMENT AND GENE-EXPRESSION IN ARABIDOPSIS [J].
DENG, XW ;
CASPAR, T ;
QUAIL, PH .
GENES & DEVELOPMENT, 1991, 5 (07) :1172-1182
[8]  
FURUYA M, 1993, ANNU REV PLANT PHYS, V44, P617, DOI 10.1146/annurev.pp.44.060193.003153
[9]  
HOU YM, 1993, PLANT CELL, V5, P329, DOI 10.1105/tpc.5.3.329
[10]  
Kendrick RE., 1994, Photomorphogenesis in Plants, V2nd