Biological behavior of CIN lesions is predictable by multiple parameter logistic regression models

被引:4
作者
van Hamont, D. [1 ,2 ]
Bulten, J. [3 ]
Shirango, H. [3 ]
Melchers, W. J. G. [1 ]
Massuger, L. F. A. G. [2 ]
de Wilde, P. C. M. [3 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Ctr Infect Dis, Dept Med Microbiol, NL-6500 HB Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Dept Obstet & Gynaecol, NL-6500 HB Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, NL-6500 HB Nijmegen, Netherlands
关键词
D O I
10.1093/carcin/bgm287
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: Progression and regression of premalignant cervical lesions cannot be predicted using conventional cytomorphological or histomorphological parameters. However, markers such as human papillomavirus (HPV) or makers indicating proliferation, genetic instability and chromosomal aberration may be of predictive value assessing short-term biological behavior of cervical intraepithelial neoplasia. In this paper, we have studied the usage of logistic regression models with Ki-67 labeling index (LI), chromosome index for chromosome 1 (CI#1) and aneusomy for chromosome 1 in cervical smears to predict progressive and regressive behavior of premalignant cervical lesions. Methods: Retrospectively, the intake smears of 42 women showing regression in follow-up and of 31 women showing progression in follow-up were assessed. Results: A multiparameter logistic regression model containing the parameters Ki-67 LI, CI#1 and the fraction of cells with four copies of chromosome 1 per nucleus appeared to be the best predicting model, overall correct classification of 93.2% (area under the receiver operating characteristic curve 0.96 +/- 0.02). After cross-validation, the model correctly classified 66 of 73 samples (90.4%). Moreover, the model predicted biological behavior perfectly assessing the smear taken subsequently to the intake smear of 46 women. Conclusion: Although measuring parameters indicating proliferation and chromosome 1 aberration is laborious, this study demonstrates that short-term progressive and regressive behavior is highly predictable using a model combing these parameters. We also showed that in the triage management of high-risk human papillomavirus-positive women with minimally abnormal smears applying a model as such can be useful.
引用
收藏
页码:840 / 845
页数:6
相关论文
共 43 条
[1]  
ALSALEH W, 1995, AM J CLIN PATHOL, V104, P154
[2]   Virologic versus cytologic triage of women with equivocal pap smears: A meta-analysis of the accuracy to detect high-grade intraepithelial neoplasia [J].
Arbyn, M ;
Buntinx, F ;
Van Ranst, M ;
Paraskevaidis, E ;
Martin-Hirsch, P ;
Dillner, J .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2004, 96 (04) :280-293
[3]   CHROMOSOME CHANGES IN 43 CARCINOMAS OF THE CERVIX UTERI [J].
ATKIN, NB ;
BAKER, MC ;
FOX, MF .
CANCER GENETICS AND CYTOGENETICS, 1990, 44 (02) :229-241
[4]   Triage using HPV-testing in persistent borderline and mildly dyskaryotic smears: Proposal for new guidelines [J].
Bais, AG ;
Rebolj, M ;
Snijders, JF ;
de Schipper, FA ;
van der Meulen, DAJ ;
Verheijen, RHM ;
Voorhorst, F ;
van Ballegooijen, M ;
Meijer, CJLM ;
Helmerhorst, TJM .
INTERNATIONAL JOURNAL OF CANCER, 2005, 116 (01) :122-129
[5]  
Bulten J, 1998, AM J PATHOL, V152, P495
[6]   Numerical aberrations of chromosome 1 in cervical intraepithelial neoplasia are strongly associated with infection with high-risk human papillomavirus types [J].
Bulten, J ;
Melchers, WJ ;
Kooy-Smits, MM ;
de Wilde, PCM ;
Poddighe, PJ ;
Robben, JCM ;
Macville, MVE ;
Massuger, LFAG ;
Bakkers, JMJE ;
Hanselaar, AGJM .
JOURNAL OF PATHOLOGY, 2002, 198 (03) :300-309
[7]  
Bulten J, 1996, J PATHOL, V178, P268
[8]   Management of women who test positive for high-risk types of human papillomavirus: the HART study [J].
Cuzick, J ;
Szarewski, A ;
Cubie, H ;
Hulman, G ;
Kitchener, H ;
Luesley, D ;
McGoogan, E ;
Menon, U ;
Terry, G ;
Edwards, R ;
Brooks, C ;
Desai, M ;
Gie, C ;
Ho, L ;
Jacobs, I ;
Pickles, C ;
Sasieni, P .
LANCET, 2003, 362 (9399) :1871-1876
[9]  
GERDES J, 1984, J IMMUNOL, V133, P1710
[10]  
Harrell FE., 2001, REGRESSION MODELING, DOI DOI 10.1007/978-3-319-19425-7