A new proof of convergence of MCMC via the ergodic theorem

被引:30
作者
Asmussen, Soren [1 ]
Glynn, Peter W. [2 ]
机构
[1] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus C, Denmark
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
关键词
Markov chain Monte Carlo; Harris recurrence; eta-irreducibility; EXPLORING POSTERIOR DISTRIBUTIONS; MARKOV-CHAINS;
D O I
10.1016/j.spl.2011.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A key result underlying the theory of MCMC is that any eta-irreducible Markov chain having a transition density with respect to eta and possessing a stationary distribution pi is automatically positive Harris recurrent. This paper provides a short self-contained proof of this fact using the ergodic theorem in its standard form as the most advanced tool. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1482 / 1485
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 2004, Springer Texts in Statistics
[2]  
[Anonymous], 2007, Stochastic Simulation: Algorithms and Analysis
[3]  
[Anonymous], 1995, Markov Chain Monte Carlo in Practice
[4]  
Breiman L., 1968, PROBABILITY
[5]  
CHAN KS, 1994, ANN STAT, V22, P1747, DOI 10.1214/aos/1176325754
[6]  
Durrett R., 2010, PROBABILITY THEORY E
[7]  
Kendall W, 2005, LECT NOTES SER INST, V7, P93
[8]  
Meyn S.P., 1993, MARKOV CHAINS STOCHA
[9]  
NUMMELIN E., 1984, General Irreducible Markov Chains and Non-negative Operators
[10]  
Roberts GO, 2004, Probab. Surv., V1, P20, DOI [DOI 10.1214/154957804100000024, 10.1214/154957804100000024]