Coarse grained model for semiquantitative lipid simulations

被引:1883
作者
Marrink, SJ [1 ]
de Vries, AH [1 ]
Mark, AE [1 ]
机构
[1] Univ Groningen, Dept Biophys Chem, NL-9747 AG Groningen, Netherlands
关键词
D O I
10.1021/jp036508g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of magnitude can be achieved. Micrometer length scales or millisecond time scales are therefore within reach. To encourage applications, the model is kept very simple. Only a small number of coarse grained atom types are defined, which interact using a few discrete levels of interaction. Despite the computational speed and the simplistic nature of the model, it proves to be both versatile in its applications and accurate in its predictions. We show that densities of liquid alkanes from decane up to eicosane can be reproduced to within 5%, and the mutual solubilities of alkanes in water and water in alkanes can be reproduced within 0.5 kT of the experimental values. The CG model for dipalmitoylphosphatidylcholine (DPPC) is shown to aggregate spontaneously into a bilayer. Structural properties such as the area per headgroup and the phosphate-phosphate distance match the experimentally measured quantities closely. The same is true for elastic properties such as the bending modulus and the area compressibility, and dynamic properties such as the lipid lateral diffusion coefficient and the water permeation rate. The distribution of the individual lipid components along the bilayer normal is very similar to distributions obtained from atomistic simulations. Phospholipids with different headgroup (ethanolamine) or different tail lengths (lauroyl, stearoyl) or unsaturated tails (oleoyl) can also be modeled with the CG force field. The experimental area per headgroup can be reproduced for most lipids within 0.02 nm(2). Finally, the CG model is applied to nonbilayer phases. Dodecylphosphocholine (DPC) aggregates into small micelles that are structurally very similar to ones modeled atomistically, and DOPE forms an inverted hexagonal phase with structural parameters in agreement with experimental data.
引用
收藏
页码:750 / 760
页数:11
相关论文
共 52 条
[1]   NMR-STUDY OF RAPID WATER DIFFUSION ACROSS LIPID BILAYERS IN DIPALMITOYL LECITHIN VESICLES [J].
ANDRASKO, J ;
FORSEN, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1974, 60 (02) :813-819
[2]   Methodological issues in lipid bilayer simulations [J].
Anézo, C ;
de Vries, AH ;
Höltje, HD ;
Tieleman, DP ;
Marrink, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9424-9433
[3]   Bridging microscopic and mesoscopic simulations of lipid bilayers [J].
Ayton, G ;
Voth, GA .
BIOPHYSICAL JOURNAL, 2002, 83 (06) :3357-3370
[4]   Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes:: a small-angle neutron scattering study [J].
Balgavy, P ;
Dubnicková, M ;
Kucerka, N ;
Kiselev, MA ;
Yaradaikin, SP ;
Uhriková, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2001, 1512 (01) :40-52
[5]  
Ben-Naim A., 1987, SOLVATION THERMODYNA
[6]   STUDIES OF THE RELATIONSHIP BETWEEN BILAYER WATER PERMEABILITY AND BILAYER PHYSICAL STATE [J].
CARRUTHERS, A ;
MELCHIOR, DL .
BIOCHEMISTRY, 1983, 22 (25) :5797-5807
[7]   THE SHAPE OF LIPID MOLECULES AND MONOLAYER MEMBRANE-FUSION [J].
CHERNOMORDIK, LV ;
KOZLOV, MM ;
MELIKYAN, GB ;
ABIDOR, IG ;
MARKIN, VS ;
CHIZMADZHEV, YA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 812 (03) :643-655
[8]   THE STRUCTURE OF A HIGHLY CONCENTRATED AQUEOUS-SOLUTION OF LITHIUM-CHLORIDE [J].
COPESTAKE, AP ;
NEILSON, GW ;
ENDERBY, JE .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (22) :4211-4216
[9]   The bending rigidity of an amphiphilic bilayer from equilibrium and nonequilibrium molecular dynamics [J].
den Otter, WK ;
Briels, WJ .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (10) :4712-4720
[10]   DIFFUSION IN PARAFFIN HYDROCARBONS [J].
DOUGLASS, DC ;
MCCALL, DW .
JOURNAL OF PHYSICAL CHEMISTRY, 1958, 62 (09) :1102-1107