Detection of specific DNA sequences using dual-color two-photon fluorescence correlation spectroscopy

被引:19
作者
Berland, KM [1 ]
机构
[1] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
关键词
fluorescence correlation spectroscopy; DNA hybridization; cross-correlation; FCS; two-photon;
D O I
10.1016/j.jbiotec.2003.11.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fluorescence correlation spectroscopy (FCS) is rapidly growing in popularity as a biomedical research tool. FCS measurements can produce an accurate characterization of the chemical, physical, and kinetic properties of a biological system. They can also serve as a diagnostic, detecting particular molecular species with high sensitivity and specificity. We here demonstrate that dual-color FCS measurements can be applied to detect and quantify the concentration of specific non-fluorescent molecular species without requiring any modifications to the molecule of interest. We demonstrate this capability by applying dual-color two-photon fluorescence cross-correlation spectroscopy to detect single stranded gamma tubulin DNA in solution with high sensitivity. This quantification is independent of molecular size, and the methods introduced can be extended to measurements in complex environments such as within living cells. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 1997, T FLUOR SP
[2]  
[Anonymous], 1980, BIOPHYS CHEM
[3]   2-PHOTON FLUORESCENCE CORRELATION SPECTROSCOPY - METHOD AND APPLICATION TO THE INTRACELLULAR ENVIRONMENT [J].
BERLAND, KM ;
SO, PTC ;
GRATTON, E .
BIOPHYSICAL JOURNAL, 1995, 68 (02) :694-701
[4]  
Berland KR, 2000, BIOPHYS J, V78, p441A
[5]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[6]   SORTING SINGLE MOLECULES - APPLICATION TO DIAGNOSTICS AND EVOLUTIONARY BIOTECHNOLOGY [J].
EIGEN, M ;
RIGLER, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :5740-5747
[7]   FLUORESCENCE CORRELATION SPECTROSCOPY .1. CONCEPTUAL BASIS AND THEORY [J].
ELSON, EL ;
MAGDE, D .
BIOPOLYMERS, 1974, 13 (01) :1-27
[8]   Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis [J].
Heinze, KG ;
Koltermann, A ;
Schwille, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (19) :10377-10382
[9]   Biological and chemical applications of fluorescence correlation spectroscopy: A review [J].
Hess, ST ;
Huang, SH ;
Heikal, AA ;
Webb, WW .
BIOCHEMISTRY, 2002, 41 (03) :697-705
[10]   Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy [J].
Kettling, U ;
Koltermann, A ;
Schwille, P ;
Eigen, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1416-1420