Towards functional proteomics of membrane protein complexes in Synechocystis sp PCC 6803

被引:147
作者
Herranen, M [1 ]
Battchikova, N [1 ]
Zhang, PP [1 ]
Graf, A [1 ]
Sirpiö, S [1 ]
Paakkarinen, V [1 ]
Aro, EM [1 ]
机构
[1] Turku Univ, Dept Biol, FIN-2001 Turku, Finland
关键词
D O I
10.1104/pp.103.032326
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The composition and dynamics of membrane protein complexes were studied in the cyanobacterium Synechocystis sp. PCC 6803 by two-dimensional blue native/SDS-PAGE followed by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Approximately 20 distinct membrane protein complexes could be resolved from photoautotrophically grown wild-type cells. Besides the protein complexes involved in linear photosynthetic electron flow and ATP synthesis (photosystem [PSI 1, PSII, cytochrome b(6)f, and ATP synthase), four distinct complexes containing type I NAD(P)H dehydrogenase (NDH-1) subunits were identified, as well as several novel, still uncharacterized protein complexes. The dynamics of the protein complexes was studied by culturing the wild type and several mutant strains under various growth modes (photoautotrophic, mixotrophic, or photoheterotrophic) or in the presence of different concentrations of CO2, iron, or salt. The most distinct modulation observed in PSs occurred in iron-depleted conditions, which induced an accumulation of CP43' protein associated with PSI trimers. The NDH-1 complexes, on the other hand, responded readily to changes in the CO2 concentration and the growth mode of the cells and represented an extremely dynamic group of membrane protein complexes. Our results give the first direct evidence, to our knowledge, that the NdhF3, NdhD3, and CupA proteins assemble together to form a small low CO2-induced protein complex and further demonstrate the presence of a fourth subunit, Sll1735, in this complex. The two bigger NDH-1 complexes contained a different set of NDH-1 polypeptides and are likely to function in respiratory and cyclic electron transfer. Pulse labeling experiments demonstrated the requirement of PSII activity for de novo synthesis of the NDH-1 complexes.
引用
收藏
页码:470 / 481
页数:12
相关论文
共 61 条
[1]   Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942 [J].
Andrizhiyevskaya, EG ;
Schwabe, TME ;
Germano, M ;
D'Haene, S ;
Kruip, J ;
van Grondelle, R ;
Dekker, JP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1556 (2-3) :265-272
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[4]   CO2 concentrating mechanisms in cyanobacteria:: molecular components, their diversity and evolution [J].
Badger, MR ;
Price, GD .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (383) :609-622
[5]   IMMUNOPURIFICATION OF A SUBCOMPLEX OF THE NAD(P)H-PLASTOQUINONE-OXIDOREDUCTASE FROM THE CYANOBACTERIUM SYNECHOCYSTIS SP PCC6803 [J].
BERGER, S ;
ELLERSIEK, U ;
KINZELT, D ;
STEINMULLER, K .
FEBS LETTERS, 1993, 326 (1-3) :246-250
[6]   Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria [J].
Bibby, TS ;
Nield, J ;
Barber, J .
NATURE, 2001, 412 (6848) :743-745
[7]   IMPROVED SILVER STAINING OF PLANT-PROTEINS, RNA AND DNA IN POLYACRYLAMIDE GELS [J].
BLUM, H ;
BEIER, H ;
GROSS, HJ .
ELECTROPHORESIS, 1987, 8 (02) :93-99
[8]   A giant chlorophyll-protein complex induced by iron defciency in cyanobacteria [J].
Boekema, EJ ;
Hifney, A ;
Yakushevska, AE ;
Piotrowski, M ;
Keegstra, W ;
Berry, S ;
Michel, KP ;
Pistorius, EK ;
Kruip, J .
NATURE, 2001, 412 (6848) :745-748
[9]   Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport [J].
Cline, K ;
Mori, H .
JOURNAL OF CELL BIOLOGY, 2001, 154 (04) :719-729
[10]   Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803 [J].
Deng, Y ;
Ye, JY ;
Mi, HL .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (05) :534-540