Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin protein ligase interaction

被引:52
作者
Nuber, U [1 ]
Scheffner, M [1 ]
机构
[1] Deutsch Krebsforschungszentrum, D-69120 Heidelberg, Germany
关键词
D O I
10.1074/jbc.274.11.7576
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the hect domain protein family are characterized by sequence similarity of their C-terminal regions to the C terminus of EG-AP, an E3 ubiquitin-protein ligase, An essential intermediate step in E6-AP-dependent ubiquitination is the formation of a thioester complex between EG-AP and ubiquitin in the presence of distinct E2 ubiquitin-conjugating enzymes including human UbcH5, a member of the UBC4/UBC5 subfamily of E2s. Similarly, several hect domain proteins, including Saccharomyces cerevisiae RSPB, form ubiquitin thioester complexes, indicating that hect domain proteins in general have E3 activity. We show here, by the use of chimeric E2s generated between UbcH5 and other E2s, that a region of UbcH5 encompassing the catalytic site cysteine residue is critical for its ability to interact with E6-AP and RSP5. Of particular importance is a phenylalanine residue at position 62 of UbcH5 that is con served among the members of the UBC4/UBC5 subfamily but is not present in any of the other known E2s, whereas the N-terminal 60 amino acids do not contribute significantly to the specificity of these interactions. The conservation of this phenylalanine residue throughout evolution underlines the importance of the ability to interact with hect domain proteins for the cellular function of UBC4/UBC5 subfamily members.
引用
收藏
页码:7576 / 7582
页数:7
相关论文
共 37 条
[1]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[2]   The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor [J].
Byrd, C ;
Turner, GC ;
Varshavsky, A .
EMBO JOURNAL, 1998, 17 (01) :269-277
[3]   THE UBIQUITIN-PROTEASOME PROTEOLYTIC PATHWAY [J].
CIECHANOVER, A .
CELL, 1994, 79 (01) :13-21
[4]  
COOK WJ, 1992, J BIOL CHEM, V267, P15116
[5]   TERTIARY STRUCTURES OF CLASS-I UBIQUITIN-CONJUGATING ENZYMES ARE HIGHLY CONSERVED - CRYSTAL-STRUCTURE OF YEAST UBC4 [J].
COOK, WJ ;
JEFFREY, LC ;
XU, YP ;
CHAU, V .
BIOCHEMISTRY, 1993, 32 (50) :13809-13817
[6]   THE N-END RULE IS MEDIATED BY THE UBC2(RAD6) UBIQUITIN-CONJUGATING ENZYME [J].
DOHMEN, RJ ;
MADURA, K ;
BARTEL, B ;
VARSHAVSKY, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (16) :7351-7355
[7]   A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p [J].
Feldman, RMR ;
Correll, CC ;
Kaplan, KB ;
Deshaies, RJ .
CELL, 1997, 91 (02) :221-230
[8]   Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein [J].
Galan, JM ;
HaguenauerTsapis, R .
EMBO JOURNAL, 1997, 16 (19) :5847-5854
[9]   THE YEAST-CELL CYCLE GENE CDC34 ENCODES A UBIQUITIN-CONJUGATING ENZYME [J].
GOEBL, MG ;
YOCHEM, J ;
JENTSCH, S ;
MCGRATH, JP ;
VARSHAVSKY, A ;
BYERS, B .
SCIENCE, 1988, 241 (4871) :1331-1335
[10]  
Hershko A, 1996, ADV EXP MED BIOL, V389, P221