Single Virus Genomics: A New Tool for Virus Discovery

被引:105
作者
Allen, Lisa Zeigler [1 ,2 ]
Ishoey, Thomas [1 ]
Novotny, Mark A. [1 ]
McLean, Jeffrey S. [1 ]
Lasken, Roger S. [1 ]
Williamson, Shannon J. [1 ]
机构
[1] J Craig Venter Inst, San Diego, CA 92121 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
来源
PLOS ONE | 2011年 / 6卷 / 03期
关键词
MULTIPLE DISPLACEMENT AMPLIFICATION; FLOW-CYTOMETRY; MARINE VIRUSES; DNA-POLYMERASE; CELL; COMMUNITIES; SAMPLES; ENUMERATION; PROKARYOTES; SEQUENCES;
D O I
10.1371/journal.pone.0017722
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Whole genome amplification and sequencing of single microbial cells has significantly influenced genomics and microbial ecology by facilitating direct recovery of reference genome data. However, viral genomics continues to suffer due to difficulties related to the isolation and characterization of uncultivated viruses. We report here on a new approach called 'Single Virus Genomics', which enabled the isolation and complete genome sequencing of the first single virus particle. A mixed assemblage comprised of two known viruses; E. coli bacteriophages lambda and T4, were sorted using flow cytometric methods and subsequently immobilized in an agarose matrix. Genome amplification was then achieved in situ via multiple displacement amplification (MDA). The complete lambda phage genome was recovered with an average depth of coverage of approximately 437X. The isolation and genome sequencing of uncultivated viruses using Single Virus Genomics approaches will enable researchers to address questions about viral diversity, evolution, adaptation and ecology that were previously unattainable.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Bacterial utilization of different size classes of dissolved organic matter [J].
Amon, RMW ;
Benner, R .
LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (01) :41-51
[2]   The marine viromes of four oceanic regions [J].
Angly, Florent E. ;
Felts, Ben ;
Breitbart, Mya ;
Salamon, Peter ;
Edwards, Robert A. ;
Carlson, Craig ;
Chan, Amy M. ;
Haynes, Matthew ;
Kelley, Scott ;
Liu, Hong ;
Mahaffy, Joseph M. ;
Mueller, Jennifer E. ;
Nulton, Jim ;
Olson, Robert ;
Parsons, Rachel ;
Rayhawk, Steve ;
Suttle, Curtis A. ;
Rohwer, Forest .
PLOS BIOLOGY, 2006, 4 (11) :2121-2131
[3]   THE ECOLOGICAL ROLE OF WATER-COLUMN MICROBES IN THE SEA [J].
AZAM, F ;
FENCHEL, T ;
FIELD, JG ;
GRAY, JS ;
MEYERREIL, LA ;
THINGSTAD, F .
MARINE ECOLOGY PROGRESS SERIES, 1983, 10 (03) :257-263
[4]   Metagenomic characterization of Chesapeake bay virioplankton [J].
Bench, Shellie R. ;
Hanson, Thomas E. ;
Williamson, Kurt E. ;
Ghosh, Dhritiman ;
Radosovich, Mark ;
Wang, Kui ;
Wommack, K. Eric .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (23) :7629-7641
[5]  
BLAINEY PC, NUCL ACIDS RES
[6]   Diversity and population structure of a near-shore marine-sediment viral community [J].
Breitbart, M ;
Felts, B ;
Kelley, S ;
Mahaffy, JM ;
Nulton, J ;
Salamon, P ;
Rohwer, F .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1539) :565-574
[7]   Genomic analysis of uncultured marine viral communities [J].
Breitbart, M ;
Salamon, P ;
Andresen, B ;
Mahaffy, JM ;
Segall, AM ;
Mead, D ;
Azam, F ;
Rohwer, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) :14250-14255
[8]  
Brussaard Corina P. D., 2009, V501, P97, DOI 10.1007/978-1-60327-164-6_11
[9]   Optimization of procedures for counting viruses by flow cytometry [J].
Brussaard, CPD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (03) :1506-1513
[10]   Flow cytometric detection of viruses [J].
Brussaard, CPD ;
Marie, D ;
Bratbak, G .
JOURNAL OF VIROLOGICAL METHODS, 2000, 85 (1-2) :175-182