Rational drug design of G-quartet DNA as anti-cancer agents

被引:37
作者
Jing, NJ [1 ]
Sha, W [1 ]
Li, YD [1 ]
Xiong, WJ [1 ]
Tweardy, DJ [1 ]
机构
[1] Baylor Coll Med, Dept Med, Infect Dis Sect, Houston, TX 77030 USA
关键词
DNA drugs; G-quartet oligodeoxynucleotides (GQ-ODN); signal transducer and activator of transcription (STAT) 3; apoptosis; cancer therapy; prostate cancer; breast cancer; drug delivery; drug design;
D O I
10.2174/1381612054546761
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The ability of certain DNA sequences to form G-quartet structures has been exploited recently to develop novel anti-cancer agents including small molecules that promote G-quartet formation within the c-MYC promoter thereby repressing c-MYC transcription and introducing G-quartet-forming oligodeoxynucleotides (GQ-ODN) into cancer cells resulting in p53-dependent cell cycle arrest and inhibition of DNA replication. GQ-ODNs also have been developed as potent inhibitors of signal transducer and activator of transcription (STAT) 3, a critical mediator of oncogenic signaling in many cancers, This review summarizes the rational design of G-quartet forming DNA drugs as Stat3 inhibitors. Topics that are reviewed include the strategy of structure-based drug design, establishment of a structure-activity relationship, development of a novel intracellular delivery system for G-quartet-forming DNA agents and in vivo drug testing to assess the anti-cancer effects of DNA drugs in tumor xenografts. Results to date with GQ-ODN targeting Stat3 are encouraging, and it is hoped that continued pursuit of the methodology outlined here may lead to development of an effective agent for treatment of metastatic cancers, such as prostate and breast, in which Stat3 is constitutively activated.
引用
收藏
页码:2841 / 2854
页数:14
相关论文
共 83 条
[1]   Interaction of human DNA topoisomerase I with G-quartet structures [J].
Arimondo, PB ;
Riou, JF ;
Mergny, JL ;
Tazi, J ;
Sun, JS ;
Garestier, T ;
Hélène, C .
NUCLEIC ACIDS RESEARCH, 2000, 28 (24) :4832-4838
[2]   Drug-targeting strategies for prostate cancer [J].
Ast, G .
CURRENT PHARMACEUTICAL DESIGN, 2003, 9 (06) :455-466
[3]   MODE OF DIMERIZATION OF HIV-1 GENOMIC RNA [J].
AWANG, G ;
SEN, D .
BIOCHEMISTRY, 1993, 32 (42) :11453-11457
[4]   Antiproliferative activity of G-rich oligonucleotides correlates with protein binding [J].
Bates, PJ ;
Kahlon, JB ;
Thomas, SD ;
Trent, JO ;
Miller, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26369-26377
[5]   Three-dimensional structure of the Stat3β homodimer bound to DNA [J].
Becker, S ;
Groner, B ;
Müller, CW .
NATURE, 1998, 394 (6689) :145-151
[6]  
Benimetskaya Luba, 2002, Clin Prostate Cancer, V1, P20, DOI 10.3816/CGC.2002.n.003
[7]   Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide [J].
Bishop, JS ;
GuyCaffey, JK ;
Ojwang, JO ;
Smith, SR ;
Hogan, ME ;
Cossum, PA ;
Rando, RF ;
Chaudhary, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) :5698-5703
[8]  
Blaskovich MA, 2003, CANCER RES, V63, P1270
[9]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[10]   BCL-X, A BCL-2-RELATED GENE THAT FUNCTIONS AS A DOMINANT REGULATOR OF APOPTOTIC CELL-DEATH [J].
BOISE, LH ;
GONZALEZGARCIA, M ;
POSTEMA, CE ;
DING, LY ;
LINDSTEN, T ;
TURKA, LA ;
MAO, XH ;
NUNEZ, G ;
THOMPSON, CB .
CELL, 1993, 74 (04) :597-608