Peptide/protein-polymer conjugates: synthetic strategies and design concepts

被引:426
作者
Gauthier, Marc A. [1 ]
Klok, Harm-Anton [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Mat, Lab Polymeres, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1039/b719689j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue-and/or site-specific modi. cation of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.
引用
收藏
页码:2591 / 2611
页数:21
相关论文
共 241 条
[1]   Non-conventional methodologies for transition-metal catalysed carbon-carbon coupling: a critical overview. Part 1: The Heck reaction [J].
Alonso, F ;
Beletskaya, IP ;
Yus, M .
TETRAHEDRON, 2005, 61 (50) :11771-11835
[2]   Selective tryptophan modification with rhodium carbenoids in aqueous solution [J].
Antos, JM ;
Francis, MB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) :10256-10257
[3]   Transition metal catalyzed methods for site-selective protein modification [J].
Antos, John M. ;
Francis, Matthew B. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (03) :253-262
[4]   Peptide-polymer vesicles prepared by atom transfer radical polymerization [J].
Ayres, L ;
Hans, P ;
Adams, J ;
Löwik, DWPM ;
van Hest, JCM .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2005, 43 (24) :6355-6366
[5]   Elastin-based side-chain polymers synthesized by ATRP [J].
Ayres, L ;
Vos, MRJ ;
Adams, PJHM ;
Shklyarevskiy, IO ;
van Hest, JCM .
MACROMOLECULES, 2003, 36 (16) :5967-5973
[6]   Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge [J].
Balan, Sibu ;
Choi, Ji-won ;
Godwin, Antony ;
Teo, Ian ;
Laborde, Carlos M. ;
Heidelberger, Sibylle ;
Zloh, Mire ;
Shaunak, Sunil ;
Brocchini, Steve .
BIOCONJUGATE CHEMISTRY, 2007, 18 (01) :61-76
[7]   LIQUID-PHASE SYNTHESIS OF PEPTIDES [J].
BAYER, E ;
MUTTER, M .
NATURE, 1972, 237 (5357) :512-&
[8]   Functionalized micellar assemblies prepared via block copolymers synthesized by living free radical polymerization upon peptide-loaded resins [J].
Becker, ML ;
Liu, JQ ;
Wooley, KL .
BIOMACROMOLECULES, 2005, 6 (01) :220-228
[9]   Peptide-polymer bioconjugates:: hybrid block copolymers generated via living radical polymerizations from resin-supported peptides [J].
Becker, ML ;
Liu, JQ ;
Wooley, KL .
CHEMICAL COMMUNICATIONS, 2003, (02) :180-181
[10]   Poly(N-acryl amino acids):: A new class of biologically active polyanions [J].
Bentolila, A ;
Vlodavsky, I ;
Ishai-Michaeli, R ;
Kovalchuk, O ;
Haloun, C ;
Domb, AJ .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (13) :2591-2600