Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles

被引:69
作者
Weisheimer, Antje [1 ,2 ]
Palmer, T. N. [1 ,2 ]
Doblas-Reyes, F. J. [1 ,3 ,4 ]
机构
[1] ECMWF, Reading RG2 9AX, Berks, England
[2] Univ Oxford, Natl Ctr Atmospher Sci NCAS, Dept Phys Atmospher Ocean & Planetary Phys, Oxford, England
[3] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain
[4] Inst Catala Ciencies Clima, E-08005 Barcelona, Spain
关键词
PREDICTION; SKILL; BRIER;
D O I
10.1029/2011GL048123
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The probabilistic skill of ensemble forecasts for the first month and the first season of the forecasts is assessed, where model uncertainty is represented by the a) multi-model, b) perturbed parameters, and c) stochastic parameterisation ensembles. The main foci of the assessment are the Brier Skill Score for near-surface temperature and precipitation over land areas and the spread-skill relationship of sea surface temperature in the tropical equatorial Pacific. On the monthly timescale, the ensemble forecast system with stochastic parameterisation provides overall the most skilful probabilistic forecasts. On the seasonal timescale the results depend on the variable under study: for near surface temperature the multi-model ensemble is most skilful for most land regions and for global land areas. For precipitation, the ensemble with stochastic parameterisation most often produces the highest scores on global and regional scales. Our results indicate that stochastic parameterisations should now be developed for multi-decadal climate predictions using earth-system models. Citation: Weisheimer, A., T. N. Palmer, and F. J. Doblas-Reyes (2011), Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles, Geophys. Res. Lett., 38, L16703, doi:10.1029/2011GL048123.
引用
收藏
页数:5
相关论文
共 32 条
[1]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[2]  
2
[3]   Evaluation of Probabilistic Quality and Value of the ENSEMBLES Multimodel Seasonal Forecasts: Comparison with DEMETER [J].
Alessandri, Andrea ;
Borrelli, Andrea ;
Navarra, Antonio ;
Arribas, Alberto ;
Deque, Michel ;
Rogel, Philippe ;
Weisheimer, Antje .
MONTHLY WEATHER REVIEW, 2011, 139 (02) :581-607
[4]   Model Uncertainty in a Mesoscale Ensemble Prediction System: Stochastic versus Multiphysics Representations [J].
Berner, J. ;
Ha, S. -Y. ;
Hacker, J. P. ;
Fournier, A. ;
Snyder, C. .
MONTHLY WEATHER REVIEW, 2011, 139 (06) :1972-1995
[5]   THE THORPEX INTERACTIVE GRAND GLOBAL ENSEMBLE [J].
Bougeault, Philippe ;
Toth, Zoltan ;
Bishop, Craig ;
Brown, Barbara ;
Burridge, David ;
Chen, De Hui ;
Ebert, Beth ;
Fuentes, Manuel ;
Hamill, Thomas M. ;
Mylne, Ken ;
Nicolau, Jean ;
Paccagnella, Tiziana ;
Park, Young-Youn ;
Parsons, David ;
Raoult, Baudouin ;
Schuster, Doug ;
Dias, Pedro Silva ;
Swinbank, Richard ;
Takeuchi, Yoshiaki ;
Tennant, Warren ;
Wilson, Laurence ;
Worley, Steve .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2010, 91 (08) :1059-1072
[6]   Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System [J].
Buizza, R ;
Miller, M ;
Palmer, TN .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (560) :2887-2908
[7]   Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts [J].
Doblas-Reyes, F. J. ;
Weisheimer, A. ;
Deque, M. ;
Keenlyside, N. ;
McVean, M. ;
Murphy, J. M. ;
Rogel, P. ;
Smith, D. ;
Palmer, T. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (643) :1538-1559
[8]  
Doblas-Reyes F. J., 2010, 621 EUR CTR MED RANG, V621
[9]   Comparing Probabilistic forecasting systems with the brier score [J].
Ferro, Christopher A. T. .
WEATHER AND FORECASTING, 2007, 22 (05) :1076-1088
[10]   Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM [J].
Giorgi, F ;
Francisco, R .
CLIMATE DYNAMICS, 2000, 16 (2-3) :169-182