Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli

被引:398
作者
Franke, S
Grass, G
Rensing, C
Nies, DH
机构
[1] Univ Halle Wittenberg, Inst Mikrobiol, D-06099 Halle An Der Saale, Germany
[2] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85731 USA
关键词
D O I
10.1128/JB.185.13.3804-3812.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cus determinant of Escherichia coli encodes the CusCFBA proteins that mediate resistance to copper and silver by cation efflux. CusA and CusB were essential for copper resistance, and CusC and CusF were required for full resistance. Replacements of methionine residues 573, 623, and 672 with isoleucine in CusA resulted in loss of copper resistance, demonstrating their functional importance. Substitutions for several other methionine residues of this protein did not have any effect. The small 10-kDa protein CusF (previously YlcC) was shown to be a periplasmic protein. CusF bound one copper per polypeptide. The pink CusF copper protein complex exhibited an absorption maximum at around 510 nm. Methionine residues of CusF were involved in copper binding as shown by site-directed mutagenesis. CusF interacted with CusB and CusC polypeptides in a yeast two-hybrid assay. In contrast to other well-studied CBA-type heavy metal efflux systems, Cus was shown to be a tetrapartite resistance system that involves the novel periplasmic copper-binding protein CusF. These data provide additional evidence for the hypothesis that Cu(I) is directly transported from the periplasm across the outer membrane by the Cus complex.
引用
收藏
页码:3804 / 3812
页数:9
相关论文
共 68 条
[1]   An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations [J].
Andersen, C ;
Koronakis, E ;
Hughes, C ;
Koronakis, V .
MOLECULAR MICROBIOLOGY, 2002, 44 (05) :1131-1139
[2]   Protein export and drug efflux through bacterial channel-tunnels [J].
Andersen, C ;
Hughes, C ;
Koronakis, V .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (04) :412-416
[3]   THE AEROBIC RESPIRATORY-CHAIN OF ESCHERICHIA-COLI [J].
ANRAKU, Y ;
GENNIS, RB .
TRENDS IN BIOCHEMICAL SCIENCES, 1987, 12 (07) :262-266
[4]   CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp strain CH34 [J].
Anton, A ;
Grosse, C ;
Reissmann, J ;
Pribyl, T ;
Nies, DH .
JOURNAL OF BACTERIOLOGY, 1999, 181 (22) :6876-6881
[5]   Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12 [J].
Aono, R ;
Tsukagoshi, N ;
Yamamoto, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :938-944
[6]   A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Mangani, S ;
Thompsett, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3814-3819
[7]   Ligand replacement study at the His120 site of purple CuA azurin [J].
Berry, SM ;
Wang, XT ;
Lu, Y .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2000, 78 (01) :89-95
[8]   Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes [J].
Bloss, T ;
Clemens, S ;
Nies, DH .
PLANTA, 2002, 214 (05) :783-791
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   MOLECULAR-GENETICS AND TRANSPORT ANALYSIS OF THE COPPER-RESISTANCE DETERMINANT (PCO) FROM ESCHERICHIA-COLI PLASMID PRJ1004 [J].
BROWN, NL ;
BARRETT, SR ;
CAMAKARIS, J ;
LEE, BTO ;
ROUCH, DA .
MOLECULAR MICROBIOLOGY, 1995, 17 (06) :1153-1166