Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation

被引:292
作者
Bijur, GN [1 ]
Jope, RS [1 ]
机构
[1] Univ Alabama, Dept Psychiat & Behav Neurobiol, Birmingham, AL 35294 USA
关键词
Akt; ATP synthase; glycogen synthase kinase-3 beta; insulin-like growth factor-1; mitochondria; phosphatidylinositol; 3-kinase;
D O I
10.1046/j.1471-4159.2003.02113.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria.
引用
收藏
页码:1427 / 1435
页数:9
相关论文
共 28 条
[1]   Role of translocation in the activation and function of protein kinase B [J].
Andjelkovic, M ;
Alessi, DR ;
Meier, R ;
Fernandez, A ;
Lamb, NJC ;
Frech, M ;
Cron, P ;
Cohen, P ;
Lucocq, JM ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31515-31524
[2]   The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes [J].
Berwick, DC ;
Hers, I ;
Heesom, KJ ;
Moule, SK ;
Tavaré, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :33895-33900
[3]   Glycogen synthase kinase-3β facilitates staurosporine- and heat shock-induced apoptosis -: Protection by lithium [J].
Bijur, GN ;
De Sarno, P ;
Jope, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7583-7590
[4]   Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3β [J].
Bijur, GN ;
Jope, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37436-37442
[5]   Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors [J].
Borgatti, P ;
Martelli, AM ;
Bellacosa, A ;
Casto, R ;
Massari, L ;
Capitani, S ;
Neri, LM .
FEBS LETTERS, 2000, 477 (1-2) :27-32
[6]   The ATP synthase - A splendid molecular machine [J].
Boyer, PD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :717-749
[7]  
Brami-Cherrier K, 2002, J NEUROSCI, V22, P8911
[8]   Ten years of protein kinase B signalling: a hard Akt to follow [J].
Brazil, DP ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) :657-664
[9]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789
[10]   Glycogen synthase kinase-3β activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal [J].
Crowder, RJ ;
Freeman, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (44) :34266-34271