Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs

被引:306
作者
Persson, K
Ly, HD
Dieckelmann, M
Wakarchuk, WW
Withers, SG
Strynadka, NCJ
机构
[1] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[3] Natl Res Council Canada, Inst Biol Sci, Ottawa, ON K1A 0R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/84168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many bacterial pathogens express lipooligosaccharides that mimic human cell surface glycoconjugates, enabling them to attach to host receptors and to evade the immune response. In Neisseria meningitidis, the galactosyltransferase LgtC catalyzes a key step in the biosynthesis of lipooligosaccharide structure by transferring alpha -D-galactose from UDP-galactose to a terminal lactose. The product retains the configuration of the donor sugar glycosidic bond; LgtC is thus a retaining glycosyltranferase, We report the 2 Angstrom crystal structures of the complex of LgtC with manganese and UDP 2-deoxy-2-fluoro-galactose (a donor sugar analog) in the presence and absence of the acceptor sugar analog 4'-deoxylactose. The structures, together with results from site-directed mutagenesis and kinetic analysis, give valuable insights into the unique catalytic mechanism and, as the first structure of a glycosyltransferase in complex with both the donor and acceptor sugars, provide a starting point for inhibitor design.
引用
收藏
页码:166 / 175
页数:10
相关论文
共 54 条
  • [1] BETA-GLUCOSYLTRANSFERASE AND PHOSPHORYLASE REVEAL THEIR COMMON THEME
    ARTYMIUK, PJ
    RICE, DW
    POIRRETTE, AR
    WILLETT, P
    [J]. NATURE STRUCTURAL BIOLOGY, 1995, 2 (02): : 117 - 120
  • [2] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [3] Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques
    Brayer, GD
    Sidhu, G
    Maurus, R
    Rydberg, EH
    Braun, C
    Wang, YL
    Nguyen, NT
    Overall, CH
    Withers, SG
    [J]. BIOCHEMISTRY, 2000, 39 (16) : 4778 - 4791
  • [4] Breton C, 1998, J BIOCHEM, V123, P1000
  • [5] Glycosyltransferase activity of fringe modulates notch-delta interactions
    Brückner, K
    Perez, L
    Clausen, H
    Cohen, S
    [J]. NATURE, 2000, 406 (6794) : 411 - 415
  • [6] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [7] GEOMETRICAL REACTION COORDINATES .2. NUCLEOPHILIC ADDITION TO A CARBONYL GROUP
    BURGI, HB
    DUNITZ, JD
    SHEFTER, E
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (15) : 5065 - 5067
  • [8] Chemo-enzymatic synthesis of fluorinated sugar nucleotide:: Useful mechanistic probes for glycosyltransferases
    Burkart, MD
    Vincent, SP
    Düffels, A
    Murray, BW
    Ley, SV
    Wong, CH
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY, 2000, 8 (08) : 1937 - 1946
  • [9] A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins
    Busch, C
    Hofmann, F
    Selzer, J
    Munro, S
    Jeckel, D
    Aktories, K
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (31) : 19566 - 19572
  • [10] A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities
    Campbell, JA
    Davies, GJ
    Bulone, V
    Henrissat, B
    [J]. BIOCHEMICAL JOURNAL, 1997, 326 : 929 - 939