Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period

被引:186
作者
Allwood, J. William [1 ]
Ellis, David I. [1 ]
Goodacre, Royston [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester Interdisciplinary Bioctr, Manchester M1 7DN, Lancs, England
关键词
D O I
10.1111/j.1399-3054.2007.01001.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Metabolomics is perhaps the ultimate level of post-genomic analysis as it can reveal changes in metabolite fluxes that are controlled by only minor changes within gene expression measured using transcriptomics and/or by analysing the proteome that elucidates post-translational control over enzyme activity. Metabolic change is a major feature of plant genetic modification and plant interactions with pathogens, pests, and their environment. In the assessment of genetically modified plant tissues, metabolomics has been used extensively to explore by-products resulting from transgene expression and scenarios of substantial equivalence. Many studies have concentrated on the physiological development of plant tissues as well as on the stress responses involved in heat shock or treatment with stress-eliciting molecules such as methyl jasmonic acid, yeast elicitor or bacterial lipopolysaccharide. Plant-host interactions represent one of the most biochemically complex and challenging scenarios that are currently being assessed by metabolomic approaches. For example, the mixtures of pathogen-colonised and non-challenged plant cells represent an extremely heterogeneous and biochemically rich sample; there is also the further complication of identifying which metabolites are derived from the plant host and which are from the interacting pathogen. This review will present an overview of the analytical instrumentation currently applied to plant metabolomic analysis, literature within the field will be reviewed paying particular regard to studies based on plant-host interactions and finally the future prospects on the metabolomic analysis of plants and plant-host interactions will be discussed.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 121 条
[1]  
Aharoni Asaph, 2002, OMICS A Journal of Integrative Biology, V6, P217, DOI 10.1089/15362310260256882
[2]   Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea [J].
Allwood, JW ;
Ellis, DI ;
Heald, JK ;
Goodacre, R ;
Mur, LAJ .
PLANT JOURNAL, 2006, 46 (03) :351-368
[3]   Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR [J].
Ardenkjaer-Larsen, JH ;
Fridlund, B ;
Gram, A ;
Hansson, G ;
Hansson, L ;
Lerche, MH ;
Servin, R ;
Thaning, M ;
Golman, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10158-10163
[4]  
BAK S, 2007, MET SOC 3 ANN C
[5]   Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations [J].
Barsch, Aiko ;
Tellstroem, Verena ;
Patschkowski, Thomas ;
Kuester, Heige ;
Niehaus, Karsten .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (09) :998-1013
[6]   Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots [J].
Bednarek, P ;
Schneider, B ;
Svatos, A ;
Oldham, NJ ;
Hahlbrock, K .
PLANT PHYSIOLOGY, 2005, 138 (02) :1058-1070
[7]   The light-hyperresponsive high pigment-2dg mutation of tomato:: alterations in the fruit metabolome [J].
Bino, RJ ;
de Vos, CHR ;
Lieberman, M ;
Hall, RD ;
Bovy, A ;
Jonker, HH ;
Tikunov, Y ;
Lommen, A ;
Moco, S ;
Levin, I .
NEW PHYTOLOGIST, 2005, 166 (02) :427-438
[8]   Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry [J].
Broadhurst, D ;
Goodacre, R ;
Jones, A ;
Rowland, JJ ;
Kell, DB .
ANALYTICA CHIMICA ACTA, 1997, 348 (1-3) :71-86
[9]   Statistical strategies for avoiding false discoveries in metabolomics and related experiments [J].
Broadhurst, David I. ;
Kell, Douglas B. .
METABOLOMICS, 2006, 2 (04) :171-196
[10]   Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism [J].
Broeckling, CD ;
Huhman, DV ;
Farag, MA ;
Smith, JT ;
May, GD ;
Mendes, P ;
Dixon, RA ;
Sumner, LW .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (410) :323-336