Sulphation of o-desmethylnaproxen and related compounds by human cytosolic sulfotransferases

被引:26
作者
Falany, CN
Ström, P
Swedmark, S
机构
[1] Univ Alabama Birmingham, Dept Pharmacol & Toxicol, Birmingham, AL 35294 USA
[2] AstraZeneca R&D, Dept Chem, Sodertalje, Sweden
[3] AstraZeneca R&D, Dept Res DMPK & Biomarkers, Sodertalje, Sweden
关键词
naproxen; drug metabolism; sulphation; sulfotransferase; naphthol;
D O I
10.1111/j.1365-2125.2005.02506.x
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Naproxen is a nonsteroidal anti-inflammatory drug widely used as an analgesic and anti-inflammatory agent. The conjugated forms of naproxen and O-DMN, its demethylated metabolite, account for 66-92% of naproxen found in human urine. In this study, O-DMN and structurally related compounds were tested as substrates for seven isoforms of human cytosolic sulfotransferase (SULT). The SULT2 or hydroxysteroid SULT isoforms, SULT2A1 and SULT2B1b, did not show reactivity with any of the compounds. All five SULT1 isoforms were active although there was variability between SULT isoforms and compounds assayed. O-DMN was sulphated by SULT1A1, SULT1B1 and SULT1E1. All five SULT1 isoforms were capable of conjugating both alpha-naphthol and beta-naphthol. Apparent K-m values for O-DMN sulphation were significantly higher than the values for either alpha-naphthol or beta-naphthol. SULTs 1A1, 1B1 and 1E1 had K(m)s for O-DMN sulphation of 84 mu M, 690 mu M and 341 mu M, respectively. These K-m values were 40-1150-fold higher than the K-m values for alpha- and beta-naphthol. The role of the side-chain in O-DMN sulphation was studied using a series of structurally related beta-naphthol compounds as substrates for SULT1A1 and SULT1E1. The presence of lipophilic groups increased affinity for both SULT isoforms whereas inclusion of a carboxyl group inhibited activity. These studies indicate that O-DMN is sulphated by SULT1A1, B1 and 1E1. Because of the high concentrations of SULT1A1 expression in human liver and intestines and its higher affinity for O-DMN sulphation, SULT1A1 may have a role in the first pass metabolism of O-DMN.
引用
收藏
页码:632 / 640
页数:9
相关论文
共 32 条
[1]   PHARMACOKINETICS OF NAPROXEN IN SUBJECTS WITH NORMAL AND IMPAIRED RENAL-FUNCTION [J].
ANTTILA, M ;
HAATAJA, M ;
KASANEN, A .
EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 1980, 18 (03) :263-268
[2]   Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3 [J].
Barnett, AC ;
Tsvetanov, S ;
Gamage, N ;
Martin, JL ;
Duggleby, RG ;
McManus, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18799-18805
[3]   CLONING AND EXPRESSION OF HUMAN LIVER DEHYDROEPIANDROSTERONE SULFOTRANSFERASE [J].
COMER, KA ;
FALANY, JL ;
FALANY, CN .
BIOCHEMICAL JOURNAL, 1993, 289 :233-240
[4]  
COMER KA, 1992, MOL PHARMACOL, V41, P645
[5]   Clinical pharmacokinetics of naproxen [J].
Davies, NM ;
Anderson, KE .
CLINICAL PHARMACOKINETICS, 1997, 32 (04) :268-293
[6]   Human dehydroepiandrosterone sulfotransferase - Purification, molecular cloning, and characterization [J].
Falany, CN ;
Comer, KA ;
Dooley, TP ;
Glatt, H .
DEHYDROEPIANDROSTERONE (DHEA) AND AGING, 1995, 774 :59-72
[7]   BACTERIAL EXPRESSION AND CHARACTERIZATION OF A CDNA FOR HUMAN LIVER ESTROGEN SULFOTRANSFERASE [J].
FALANY, CN ;
KRASNYKH, V ;
FALANY, JL .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 52 (06) :529-539
[8]  
Falany CN, 2005, METHOD PHARMACOL TOX, P341
[9]   PURIFICATION AND CHARACTERIZATION OF HUMAN LIVER PHENOL-SULFATING PHENOL SULFOTRANSFERASE [J].
FALANY, CN ;
VAZQUEZ, ME ;
HEROUX, JA ;
ROTH, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1990, 278 (02) :312-318
[10]   PURIFICATION AND CHARACTERIZATION OF HUMAN-LIVER DEHYDROEPIANDROSTERONE SULFOTRANSFERASE [J].
FALANY, CN ;
VAZQUEZ, ME ;
KALB, JM .
BIOCHEMICAL JOURNAL, 1989, 260 (03) :641-646