Optical transmission losses in polycrystalline silicon strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength

被引:83
作者
Liao, L [1 ]
Lim, DR [1 ]
Agarwal, AM [1 ]
Duan, XM [1 ]
Lee, KK [1 ]
Kimerling, LC [1 ]
机构
[1] MIT, Mat Sci & Engn Dept, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
polySi; strip waveguides; optical transmission loss;
D O I
10.1007/s11664-000-0122-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Signal propagation delays dominate over gate delays in the ever-shrinking ultra large scale integrated (ULSI) circuits. Consequently, silicon-based monolithic optoelectronic circuits (SMOE) with their Light speed signal propagation can provide unique advantages for future generations of microprocessors. For such SMOE circuits, we need optical interconnects compatible with silicon technology. Strip waveguides consisting of polycrystalline silicon (polySi) clad with SiO2 offer excellent optical confinement and ease of fabrication that are ideal for such interconnect applications. One major challenge with using this material system, however, is its insertion loss. Tn this paper we provide techniques for minimizing optical transmission losses in polySi strip waveguides. Our previous work using polySi strip waveguides, showed an optical transmission loss of 15 dB/cm at lambda = 1.55 mum, which is a communication wavelength of choice in optical fibers because it represents an absorption minimum. Similar measurements in crystalline silicon strip waveguides' yielded transmission losses of less than 1 dB/cm. Hitherto, in decreasing loss from 77 dB/cm to 15 dB/cm, we had minimized loss from surface scattering by improving the film surface morphology, and decreased bulk absorption with hydrogen passivation. In this paper we report a further reduction in the residual bulk loss from 15 dB/cm to 9 dB/cm. By experimenting with different waveguide core dimensions, we find that the contribution of bulk loss towards net transmission loss decreases with waveguide core thickness. Additionally, high temperature treatment provides strain relief in the polySi, decreasing transmission loss. Annealing in an oxygen ambient is not recommended because it always increases transmission loss. Hydrogen passivation improves transmission, attributable to passivation of light-absorbing dangling bond defect sites present at polySi grain boundaries. Together, these methods have resulted in the lowest measured loss value of 9 dB/cm at lambda = 1.55 mum. Since integrated SiGe and Ge photodetectors are more efficient at shorter wavelengths like lambda = 1.32 mum, transmission loss is also measured at lambda = 1.32 mum. Losses at the two wavelengths (1.32 mum and 1.55 mum) are similar when defects and stress in the waveguides are minimized.
引用
收藏
页码:1380 / 1386
页数:7
相关论文
共 11 条
[1]   HYDROGENATION OF POLYCRYSTALLINE SILICON THIN-FILM TRANSISTORS BY PLASMA ION-IMPLANTATION [J].
BERNSTEIN, DJ ;
QIN, S ;
CHAN, C ;
KING, TJ .
IEEE ELECTRON DEVICE LETTERS, 1995, 16 (10) :421-423
[2]   SEM OVERESTIMATION OF THE MEAN GRAIN-SIZE OF CHEMICALLY ETCHED POLYCRYSTALLINE SILICON FILMS [J].
BISERO, D .
MATERIALS LETTERS, 1994, 18 (04) :215-217
[3]   Losses in polycrystalline silicon waveguides [J].
Foresi, JS ;
Black, MR ;
Agarwal, AM ;
Kimerling, LC .
APPLIED PHYSICS LETTERS, 1996, 68 (15) :2052-2054
[4]  
GIOVANE L, 1998, THESIS MIT
[5]  
KAMINS T, 1991, POLYCRYSTALLINE SILI, P56
[6]  
KIMERLING LC, 1994, ERBIUM DOPED SILICON, P486
[7]  
LIAO L, 1997, THESIS MIT
[8]  
LIM DR, 1994, THESIS MIT
[9]  
Ostapenko S, 1996, APPL PHYS LETT, V68, P2873, DOI 10.1063/1.116353
[10]   Silicon interstitial trapping in polycrystalline silicon films studied by monitoring interstitial reactions with underlying insulating films [J].
Tsoukalas, D ;
Kouvatsos, D .
APPLIED PHYSICS LETTERS, 1996, 68 (11) :1549-1551