Scale-space from nonlinear filters

被引:39
作者
Bangham, JA
Ling, PD
Harvey, R
机构
[1] School of Information Systems, University of Eusi Angliu
关键词
scale-space; image processing; morphology; vision; diffusion;
D O I
10.1109/34.494641
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decomposition by extrema is put into the context of linear vision systems and scale-space. It is proved that discrete one-dimensional, M- and N-sieves neither introduce new edges as the scale increases nor create new extrema. They share this property with diffusion based filters. They are robust and preserve edges of large scale features.
引用
收藏
页码:520 / 528
页数:9
相关论文
共 37 条
[1]   UNIQUENESS OF THE GAUSSIAN KERNEL FOR SCALE-SPACE FILTERING [J].
BABAUD, J ;
WITKIN, AP ;
BAUDIN, M ;
DUDA, RO .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (01) :26-33
[2]  
Bangham J. A., 1990, Communication, Control and Signal Processing. Proceedings of the 1990 Bilkent International Conference on New Trends in Communication, Control and Signal Processing, P1591
[3]  
BANGHAM JA, 1994, SIGNAL PROCESS, V38, P387, DOI 10.1016/0165-1684(94)90156-2
[4]   PROPERTIES OF A SERIES OF NESTED MEDIAN FILTERS, NAMELY THE DATA SIEVE [J].
BANGHAM, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (01) :31-42
[5]  
Bangham JA, 1994, COMP IMAG VIS, V2, P179
[6]  
BANGHAM JA, 1994, P SOC PHOTO-OPT INS, V2180, P90, DOI 10.1117/12.172560
[7]  
BANGHAM JA, 1996, IN PRESS ECCV CAMBRI
[8]  
BANGHAM JA, 1994, EUSIPCO
[9]  
BANGHAM JA, 1992, P IEEE WORKSH VIS SI, P37
[10]  
BANGHAM JA, 1995, P IEEE WORKSH NONL S, V2, P1038