Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis

被引:66
作者
Peng, Fred Y. [1 ]
Weselake, Randall J. [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, Agr Lipid Biotechnol Program, Edmonton, AB T6G 2P5, Canada
来源
BMC GENOMICS | 2011年 / 12卷
关键词
TRANSCRIPTION FACTOR; FATTY-ACID; LEAFY COTYLEDON1; LATE EMBRYOGENESIS; EXPRESSION DATA; BRASSICA-NAPUS; PROTEIN GENES; OILSEED RAPE; CIS-ELEMENTS; NETWORKS;
D O I
10.1186/1471-2164-12-286
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results: We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions: Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.
引用
收藏
页数:14
相关论文
共 93 条
[1]   Scale-free networks in cell biology [J].
Albert, R .
JOURNAL OF CELL SCIENCE, 2005, 118 (21) :4947-4957
[2]   A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation [J].
Alonso, Rosario ;
Onate-Sanchez, Luis ;
Weltmeier, Fridtjof ;
Ehlert, Andrea ;
Diaz, Isabel ;
Dietrich, Katrin ;
Vicente-Carbajosa, Jesus ;
Droege-Laser, Wolfgang .
PLANT CELL, 2009, 21 (06) :1747-1761
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   Deciphering Transcriptional and Metabolic Networks Associated with Lysine Metabolism during Arabidopsis Seed Development [J].
Angelovici, Ruthie ;
Fait, Aaron ;
Zhu, Xiaohong ;
Szymanski, Jedrzej ;
Feldmesser, Ester ;
Fernie, Alisdair R. ;
Galili, Gad .
PLANT PHYSIOLOGY, 2009, 151 (04) :2058-2072
[5]   Approaches for extracting practical information from gene co-expression networks in plant biology [J].
Aoki, Koh ;
Ogata, Yoshiyuki ;
Shibata, Daisuke .
PLANT AND CELL PHYSIOLOGY, 2007, 48 (03) :381-390
[6]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[7]   Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos [J].
Bao, XM ;
Ohlrogge, J .
PLANT PHYSIOLOGY, 1999, 120 (04) :1057-1062
[8]   WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis [J].
Baud, Sebastien ;
Mendoza, Monica Santos ;
To, Alexandra ;
Harscoet, Erwana ;
Lepiniec, Loic ;
Dubreucq, Bertrand .
PLANT JOURNAL, 2007, 50 (05) :825-838
[9]   Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis [J].
Baud, Sebastien ;
Lepiniec, Loic .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2009, 47 (06) :448-455
[10]   Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a Web-based database [J].
Beisson, F ;
Koo, AJK ;
Ruuska, S ;
Schwender, J ;
Pollard, M ;
Thelen, JJ ;
Paddock, T ;
Salas, JJ ;
Savage, L ;
Milcamps, A ;
Mhaske, VB ;
Cho, YH ;
Ohlrogge, JB .
PLANT PHYSIOLOGY, 2003, 132 (02) :681-697