Silicates, silicate weathering, and microbial ecology

被引:253
作者
Bennett, PC [1 ]
Rogers, JR
Choi, WJ
机构
[1] Univ Texas, Dept Geol Sci, Austin, TX 78712 USA
[2] RMT Inc, Austin, TX USA
关键词
microbial geochemistry; phosphate; silicate weathering;
D O I
10.1080/01490450151079734
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mineralogy, microbial ecology, and mineral weathering in the subsurface are an intimately linked biogeochemical system. Although bacteria have been implicated indirectly in the accelerated weathering of minerals, it is not clear if this interaction is simply the coincidental result of microbial metabolism, or if it represents a specific strategy offering the colonizing bacteria a competitive ecological advantage. Our studies provide evidence that silicate weathering by bacteria is sometimes driven by the nutrient requirements of the microbial consortium, and therefore depends on the trace nutrient content of each aquifer mineral. This occurrence was observed in reducing groundwaters where carbon is abundant but phosphate is scarce: here, even resistant feldspars are weathered rapidly. This suggests that the progression of mineral weathering may be influenced by a mineral's nutritional potential, with microorganisms destroying only beneficial minerals. The rock record, therefore, may contain a remnant mineralogy that reflects early microbial destruction of biologically valuable minerals. leaving a residuum of "useless" minerals, where "value" depends on the organism, its metabolic needs, and the diagenetic environment. Conversely, the subsurface distribution of microorganisms may, in part, be controlled by the mineralogy and by the ability of an organism to take advantage of mineral-bound nutrients.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 83 条
[1]   THERMODYNAMIC AND KINETIC CONSTRAINTS ON REACTION-RATES AMONG MINERALS AND AQUEOUS-SOLUTIONS .1. THEORETICAL CONSIDERATIONS [J].
AAGAARD, P ;
HELGESON, HC .
AMERICAN JOURNAL OF SCIENCE, 1982, 282 (03) :237-285
[2]   BEHAVIOR OF A PYROGENIC SILICA IN SIMPLE ELECTROLYTES [J].
ABENDROTH, RP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1970, 34 (04) :591-+
[3]  
ALBRECHTSEN JJ, 1994, HYDROCARBON BIOREMED, P418
[4]  
[Anonymous], ADSORPTION INORGANIC
[5]  
AVAKYAN ZA, 1981, MICROBIOLOGY+, V50, P115
[6]   CLONING OF A MINERAL PHOSPHATE-SOLUBILIZING GENE FROM PSEUDOMONAS-CEPACIA [J].
BABUKHAN, S ;
YEO, TC ;
MARTIN, WL ;
DURON, MR ;
ROGERS, RD ;
GOLDSTEIN, AH .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (03) :972-978
[7]   CRUDE-OIL IN A SHALLOW SAND AND GRAVEL AQUIFER .3. BIOGEOCHEMICAL REACTIONS AND MASS-BALANCE MODELING IN ANOXIC GROUNDWATER [J].
BAEDECKER, MJ ;
COZZARELLI, IM ;
EGANHOUSE, RP ;
SIEGEL, DI ;
BENNETT, PC .
APPLIED GEOCHEMISTRY, 1993, 8 (06) :569-586
[8]   Biologically versus inorganically mediated weathering reactions: Relationships between minerals and extracellular microbial polymers in lithobiontic communities [J].
Barker, WW ;
Banfield, JF .
CHEMICAL GEOLOGY, 1996, 132 (1-4) :55-69
[9]   Experimental observations of the effects of bacteria on aluminosilicate weathering [J].
Barker, WW ;
Welch, SA ;
Chu, S ;
Banfield, JF .
AMERICAN MINERALOGIST, 1998, 83 (11-12) :1551-1563
[10]  
BARKER WW, 1992, ICHNOS, V2, P55