Spectrally resolved electronic energy transfer from silicon nanocrystals to molecular oxygen mediated by direct electron exchange -: art. no. 115405

被引:56
作者
Gross, E [1 ]
Kovalev, D
Künzner, N
Diener, J
Koch, F
Timoshenko, VY
Fujii, M
机构
[1] Tech Univ Munich, Phys Dept E16, D-85747 Garching, Germany
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
[3] Kobe Univ, Fac Engn, Dept Elect & Elect Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
来源
PHYSICAL REVIEW B | 2003年 / 68卷 / 11期
关键词
D O I
10.1103/PhysRevB.68.115405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on a spectroscopic study of electronic energy transfer from excitons confined in silicon nanocrystals to triplet ground-state oxygen molecules, being either physisorbed on the nanocrystal surface or present in the gas phase. The broad photoluminescence spectrum of the nanocrystal assembly probes the transfer of excitation and verifies that nonresonant energy transfer proceeds via multiphonon emission. At low temperatures a small spatial separation of the interacting species and a long lifetime of triplet-state excitons provide the strongest coupling. The energy-transfer time to the first and second excited states of molecular oxygen is in the range of 100 mus and shorter than 3 mus, respectively. Nanocrystals with a chemically modified surface are employed to demonstrate that energy transfer is governed by direct electron exchange. Magneto-optical experiments reveal the importance of the spin orientation of the exchanged electrons for the transfer rate. In the regime of intermediate temperatures (110-250 K) the transfer of excitation to the O-2 dimer is resolved.
引用
收藏
页数:11
相关论文
共 33 条
[1]  
Abakumov V.N., 1991, Nonradiative Recombination in Semiconductors. Modern Problems in Condensed Matter Sciences, V33
[2]   Cavity-ring-down spectroscopy on the oxygen A band in magnetic fields up to 20 T [J].
Berden, G ;
Engeln, R ;
Christianen, PCM ;
Maan, JC ;
Meijer, G .
PHYSICAL REVIEW A, 1998, 58 (04) :3114-3123
[3]   Porous silicon: a quantum sponge structure for silicon based optoelectronics [J].
Bisi, O ;
Ossicini, S ;
Pavesi, L .
SURFACE SCIENCE REPORTS, 2000, 38 (1-3) :1-126
[4]   SPECTROSCOPIC IDENTIFICATION OF THE LUMINESCENCE MECHANISM OF HIGHLY POROUS SILICON [J].
CALCOTT, PDJ ;
NASH, KJ ;
CANHAM, LT ;
KANE, MJ ;
BRUMHEAD, D .
JOURNAL OF LUMINESCENCE, 1993, 57 (1-6) :257-269
[5]   Rotationally resolved absorption spectrum of the O2 dimer in the visible range [J].
Campargue, A ;
Biennier, L ;
Kachanov, A ;
Jost, R ;
Bussery-Honvault, B ;
Veyret, V ;
Churassy, S ;
Bacis, R .
CHEMICAL PHYSICS LETTERS, 1998, 288 (5-6) :734-742
[6]   AUGER IONIZATION OF SEMICONDUCTOR QUANTUM DROPS IN A GLASS MATRIX [J].
CHEPIC, DI ;
EFROS, AL ;
EKIMOV, AI ;
VANOV, MG ;
KHARCHENKO, VA ;
KUDRIAVTSEV, IA ;
YAZEVA, TV .
JOURNAL OF LUMINESCENCE, 1990, 47 (03) :113-127
[7]   OSCILLATORY EXCITON EMISSION IN CDS [J].
CONRADI, J ;
HAERING, RR .
PHYSICAL REVIEW LETTERS, 1968, 20 (24) :1344-+
[8]   The structural and luminescence properties of porous silicon [J].
Cullis, AG ;
Canham, LT ;
Calcott, PDJ .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :909-965
[9]   Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria [J].
Damjanovic, A ;
Ritz, T ;
Schulten, K .
PHYSICAL REVIEW E, 1999, 59 (03) :3293-3311
[10]   AUGER AND COULOMB CHARGING EFFECTS IN SEMICONDUCTOR NANOCRYSTALLITES [J].
DELERUE, C ;
LANNOO, M ;
ALLAN, G ;
MARTIN, E ;
MIHALCESCU, I ;
VIAL, JC ;
ROMESTAIN, R ;
MULLER, F ;
BSIESY, A .
PHYSICAL REVIEW LETTERS, 1995, 75 (11) :2228-2231