Oxidation states and fractionation of plaque iron on roots of common reeds

被引:48
作者
Wang, TG [1 ]
Peverly, JH [1 ]
机构
[1] CORNELL UNIV,DEPT SOIL CROP & ATMOSPHER SCI,ITHACA,NY 14853
关键词
D O I
10.2136/sssaj1996.03615995006000010049x
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Characterization of iron plaque stability on roots of wetland plants is of value in consideration of several wetland issues. Active and dormant roots of common reed [Phragmites australis (Cav.) Trin. ex Steudel] sampled from a constructed wetland were treated sequentially with 0.5 M MgCl2 (salt extraction), HCl solution at pH 3, 2, 1.6, 0.6, 0.3, and 0 (acid extraction), and 0.385 M Na2S2O4 (reductant extraction). Iron was measured with an orthophenanthrolene method. Results indicated that dormant roots contained 6, 890, 180, and 140 mu g Fe g(-1) fresh root weight in salt extractable, acid extractable, reductant extractable, and residual fractions, respectively, and active roots had a higher proportion of acid extractable Fe and lower proportions of reductant extractable and residual Fe than dormant roots. Following acid extraction, substantial Fe2+ was detected. Ferric iron reduction after extraction was also found. The models of Fe extraction dynamics at different pH levels were fit to standard equations. According to the comparison of the constants in these models, the Fe release rate and potential for extraction in the acid solutions tended to increase as the pH decreased, but the effect on Fe extraction became saturated when pH approached zero. The oxidation state of Fe in root plaque was examined with Mossbauer spectroscopy after the roots were dried at 80 degrees C in a regular oven and were powdered. The results indicated that the Fe(lI) proportion is 33% in powdered dormant roots, and 27% in active roots. Based on these results, we suggest that the previously accepted concept of plaque composed entirely of Fe3+ needs to be further examined.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 36 条
[1]  
[Anonymous], J ENV QUAL
[2]   OXIDISING ACTIVITY OF ROOTS IN WATERLOGGED SOILS [J].
ARMSTRON.W .
PHYSIOLOGIA PLANTARUM, 1967, 20 (04) :920-+
[3]   LIGHT-ENHANCED CONVECTIVE THROUGHFLOW INCREASES OXYGENATION IN RHIZOMES AND RHIZOSPHERE OF PHRAGMITES-AUSTRALIS (CAV) TRIN EX STEUD [J].
ARMSTRONG, J ;
ARMSTRONG, W .
NEW PHYTOLOGIST, 1990, 114 (01) :121-128
[4]   PHRAGMITES-AUSTRALIS - A PRELIMINARY-STUDY OF SOIL-OXIDIZING SITES AND INTERNAL GAS-TRANSPORT PATHWAYS [J].
ARMSTRONG, J ;
ARMSTRONG, W .
NEW PHYTOLOGIST, 1988, 108 (04) :373-382
[5]   PHRAGMITES-AUSTRALIS - VENTURI-INDUCED AND HUMIDITY-INDUCED PRESSURE FLOWS ENHANCE RHIZOME AERATION AND RHIZOSPHERE OXIDATION [J].
ARMSTRONG, J ;
ARMSTRONG, W ;
BECKETT, PM .
NEW PHYTOLOGIST, 1992, 120 (02) :197-207
[6]  
BACHA RE, 1979, SOIL SCI SOC AM J, V41, P931
[7]   NET OXYGEN AND CARBON-DIOXIDE BALANCES IN SOLUTIONS BATHING ROOTS OF WETLAND PLANTS [J].
BEDFORD, BL ;
BOULDIN, DR ;
BELIVEAU, BD .
JOURNAL OF ECOLOGY, 1991, 79 (04) :943-959
[8]  
BRIX H, 1993, CONSTRUCTED WETLANDS FOR WATER QUALITY IMPROVEMENT, P391
[9]   IRON COATINGS ON RICE ROOTS - MINERALOGY AND QUANTITY INFLUENCING FACTORS [J].
CHEN, CC ;
DIXON, JB ;
TURNER, FT .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1980, 44 (03) :635-639
[10]   IRON COATINGS ON RICE ROOTS - MORPHOLOGY AND MODELS OF DEVELOPMENT [J].
CHEN, CC ;
DIXON, JB ;
TURNER, FT .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1980, 44 (05) :1113-1119