Structure and function of the human calcium-sensing receptor: insights from natural and engineered mutations and allosteric modulators

被引:89
作者
Hu, Jianxin
Spiegel, Allen M.
机构
[1] NIDDK, NIH, Mol Signalling Sect, Bioorgan Chem Lab, Bethesda, MD 20892 USA
[2] Albert Einstein Coll Med, Off Dean, New York, NY USA
关键词
G protein-coupled receptor; hypercalcaemia; hypocalcaemia; receptor mutations; allosteric modulators;
D O I
10.1111/j.1582-4934.2007.00096.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The human extracellular Ca2+-sensing receptor (CaR), a member of the G protein-coupled receptor family 3, plays a key role in the regulation of extracellular calcium homeostasis. It is one of just a few G protein-coupled receptors with a large number of naturally occurring mutations identified in patients. In contrast to the small sizes of its agonists, this large dimeric receptor consists of domains with topologically distinctive orthosteric and allosteric sites. Information derived from studies of naturally occurring mutations, engineered mutations, allosteric modulators and crystal structures of the agonist-binding domain of homologous type 1 metabotropic glutamate receptor and G protein-coupled rhodopsin offers new insights into the structure and function of the CaR.
引用
收藏
页码:908 / 922
页数:15
相关论文
共 79 条
[1]   Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor [J].
Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
Nature, 2006, 7076 (599-603) :599-603
[2]   A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion in vivo [J].
Arey, BJ ;
Seethala, R ;
Ma, ZP ;
Fura, A ;
Morin, J ;
Swartz, J ;
Vyas, V ;
Yang, W ;
Dickson, JK ;
Feyen, JHM .
ENDOCRINOLOGY, 2005, 146 (04) :2015-2022
[3]   In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: Normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia [J].
Bai, M ;
Pearce, SHS ;
Kifor, O ;
Trivedi, S ;
Stauffer, UG ;
Thakker, RV ;
Brown, EM ;
Steinmann, B .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (01) :88-96
[4]   Expression and characterization of inactivating and activating mutations in the human Ca-0(2+)-sensing receptor [J].
Bai, M ;
Quinn, S ;
Trivedi, S ;
Kifor, O ;
Pearce, SHS ;
Pollak, MR ;
Krapcho, K ;
Hebert, SC ;
Brown, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) :19537-19545
[5]   Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function [J].
Bai, M ;
Trivedi, S ;
Kifor, O ;
Quinn, SJ ;
Brown, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :2834-2839
[6]   Molecular tinkering of G protein-coupled receptors: an evolutionary success [J].
Bockaert, J ;
Pin, JP .
EMBO JOURNAL, 1999, 18 (07) :1723-1729
[7]   The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain [J].
Bräuner-Osborne, H ;
Jensen, AA ;
Sheppard, PO ;
O'Hara, P ;
Krogsgaard-Larsen, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18382-18386
[8]   Clinical lessons from the calcium-sensing receptor [J].
Brown, Edward M. .
NATURE CLINICAL PRACTICE ENDOCRINOLOGY & METABOLISM, 2007, 3 (02) :122-133
[9]   CLONING AND CHARACTERIZATION OF AN EXTRACELLULAR CA2+-SENSING RECEPTOR FROM BOVINE PARATHYROID [J].
BROWN, EM ;
GAMBA, G ;
RICCARDI, D ;
LOMBARDI, M ;
BUTTERS, R ;
KIFOR, O ;
SUN, A ;
HEDIGER, MA ;
LYTTON, J ;
HEBERT, SC .
NATURE, 1993, 366 (6455) :575-580
[10]   Extracellular calcium sensing and extracellular calcium signaling [J].
Brown, EM ;
MacLeod, RJ .
PHYSIOLOGICAL REVIEWS, 2001, 81 (01) :239-297