Identification of a biosynthetic gene cluster in rice for momilactones

被引:234
作者
Shimura, Kazuhiro
Okada, Atsushi
Okada, Kazunori
Jikumaru, Yusuke
Ko, Kwang-Wook
Toyomasu, Tomonobu
Sassa, Takeshi
Hasegawa, Morifumi
Kodama, Osamu
Shibuya, Naoto
Koga, Jinichiro
Nojiri, Hideaki
Yamane, Hisakazu
机构
[1] Univ Tokyo, Biotechnol Res Ctr, Bunkyo Ku, Tokyo 1138657, Japan
[2] Yamagata Univ, Dept Bioresource Engn, Yamagata 9978555, Japan
[3] Ibaraki Univ, Coll Agr, Ami, Ibaraki 3000393, Japan
[4] Meiji Univ, Dept Life Sci, Kanagawa 2148571, Japan
[5] Meiji Seika Kaisha Ltd, Food & Hlth Res & Dev Labs, Sakado, Saitama 3500289, Japan
关键词
D O I
10.1074/jbc.M703344200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rice diterpenoid phytoalexins such as momilactones and phytocassanes are produced in suspension-cultured rice cells treated with a chitin oligosaccharide elicitor and in rice leaves irradiated with UV light. The common substrate geranylgeranyl diphosphate is converted into diterpene hydrocarbon precursors via a two-step sequential cyclization and then into the bioactive phytoalexins via several oxidation steps. It has been suggested that microsomal cytochrome P-450 monooxygenases (P-450s) are involved in the downstream oxidation of the diterpene hydrocarbons leading to the phytoalexins and that a dehydrogenase is involved in momilactone biosynthesis. However, none of the enzymes involved in the downstream oxidation of the diterpene hydrocarbons have been identified. In this study, we found that a putative dehydrogenase gene (AK103462) and two functionally unknown P-450 genes (CYP99A2 and CYP99A3) form a chitin oligosaccharide elicitor- and UV-inducible gene cluster, together with OsKS4 and OsCyc1, the diterpene cyclase genes involved in momilactone biosynthesis. Functional analysis by heterologous expression in Escherichia coli followed by enzyme assays demonstrated that the AK103462 protein catalyzes the conversion of 3 beta-hydroxy- 9 beta H-pimara-7,15-dien-19,6 beta-olide into momilactone A. The double knockdown of CYP99A2 and CYP99A3 specifically suppressed the elicitor-inducible production of momilactones, strongly suggesting that CYP99A2, CYP99A3, or both are involved in momilactone biosynthesis. These results provide strong evidence for the presence on chromosome 4 of a gene cluster involved in momilactone biosynthesis.
引用
收藏
页码:34013 / 34018
页数:6
相关论文
共 35 条
[1]   NOVEL PHYTOALEXINS (ORYZALEXINS-A, ORYZALEXIN-B AND ORYZALEXIN-C) ISOLATED FROM RICE BLAST LEAVES INFECTED WITH PYRICULARIA-ORYZAE .1. ISOLATION, CHARACTERIZATION AND BIOLOGICAL-ACTIVITIES OF ORYZALEXINS [J].
AKATSUKA, T ;
KODAMA, O ;
SEKIDO, H ;
KONO, Y ;
TAKEUCHI, S .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1985, 49 (06) :1689-1694
[2]   Biosynthesis of rice phytoalexin:: Enzymatic conversion of 3β-hydroxy-9β-pimara-7,15-dien-19,6β-olide to momilactone A [J].
Atawong, A ;
Hasegawa, M ;
Kodama, O .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2002, 66 (03) :566-570
[3]   Cloning of three A-type cytochromes p450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome p450 in the biosynthesis of the cyanogenic glucoside dhurrin [J].
Bak, S ;
Kahn, RA ;
Nielsen, HL ;
Moller, BL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 36 (03) :393-405
[4]   ISOLATION AND CHARACTERIZATION OF 2 PHYTOALEXINS FROM RICE AS MOMILACTONES-A AND MOMILACTONES-B [J].
CARTWRIGHT, DW ;
LANGCAKE, P ;
PRYCE, RJ ;
LEWORTHY, DP ;
RIDE, JP .
PHYTOCHEMISTRY, 1981, 20 (03) :535-537
[5]   Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor [J].
Cho, EM ;
Okada, A ;
Kenmoku, H ;
Otomo, K ;
Toyomasu, T ;
Mitsuhashi, W ;
Sassa, T ;
Yajima, A ;
Yabuta, G ;
Mori, K ;
Oikawa, H ;
Toshima, H ;
Shibuya, N ;
Nojiri, H ;
Omori, T ;
Nishiyama, M ;
Yamane, H .
PLANT JOURNAL, 2004, 37 (01) :1-8
[6]   Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice [J].
Chuio, Tetsuya ;
Takai, Ryota ;
Akimoto-Tomiyama, Chiharu ;
Ando, Sugihiro ;
Minami, Eiichi ;
Nagamura, Yoshiaki ;
Kaku, Hanae ;
Shibuya, Naoto ;
Yasuda, Michiko ;
Nakashita, Hideo ;
Umemura, Kenji ;
Okada, Atsushi ;
Okada, Kazunori ;
Nojiri, Hideaki ;
Yamane, Hisakazu .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2007, 1769 (7-8) :497-505
[7]   Analysis of a chemical plant defense mechanism in grasses [J].
Frey, M ;
Chomet, P ;
Glawischnig, E ;
Stettner, C ;
Grun, S ;
Winklmair, A ;
Eisenreich, W ;
Bacher, A ;
Meeley, RB ;
Briggs, SP ;
Simcox, K ;
Gierl, A .
SCIENCE, 1997, 277 (5326) :696-699
[8]   Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling [J].
Ito, Y ;
Kaku, H ;
Shibuya, N .
PLANT JOURNAL, 1997, 12 (02) :347-356
[9]   Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor [J].
Kaku, Hanae ;
Nishizawa, Yoko ;
Ishii-Minami, Naoko ;
Akimoto-Tomiyama, Chiharu ;
Dohmae, Naoshi ;
Takio, Koji ;
Minami, Eiichi ;
Shibuya, Naoto .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (29) :11086-11091
[10]   CHARACTERIZATION OF AN INDUCIBLE P450 HYDROXYLASE INVOLVED IN THE RICE DITERPENE PHYTOALEXIN BIOSYNTHETIC-PATHWAY [J].
KATO, H ;
KODAMA, O ;
AKATSUKA, T .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 316 (02) :707-712