Phase transition in a self-gravitating planar gas

被引:16
作者
Abdalla, E
Tabar, MRR
机构
[1] USP, Inst Fis, BR-66318 Sao Paulo, Brazil
[2] Iran Univ Sci & Technol, Dept Phys, Tehran 16844, Iran
[3] Inst Studies Theoret Phys & Math, Tehran 19395, Iran
关键词
D O I
10.1016/S0370-2693(98)01101-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a gas of Newtonian self-gravitating particles in two-dimensional space, finding a phase transition, with a high temperature homogeneous phase and a low temperature clumped one. We argue that the system is described in terms of a gas with fractal behaviour, (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:339 / 344
页数:6
相关论文
共 18 条
[1]  
ABDALLA E, 1994, LEC NOTES PHYSICS, V20
[2]  
ANTONI M, CONDMAT9801008
[3]   Logarithmic operators and hidden continuous symmetry in critical disordered models [J].
Caux, JS ;
Kogan, II ;
Tsvelik, AM .
NUCLEAR PHYSICS B, 1996, 466 (03) :444-462
[4]   COLLAPSING SYSTEMS [J].
COMPAGNER, A ;
BRUIN, C ;
ROELSE, A .
PHYSICAL REVIEW A, 1989, 39 (11) :5989-6002
[5]   CONFORMAL FIELD-THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1988, 3 (17) :1651-1656
[6]   Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach [J].
deVega, HJ ;
Sanchez, N ;
Combes, F .
PHYSICAL REVIEW D, 1996, 54 (10) :6008-6020
[7]   CONFORMAL FIELD-THEORY AND 2-D QUANTUM-GRAVITY [J].
DISTLER, J ;
KAWAI, H .
NUCLEAR PHYSICS B, 1989, 321 (02) :509-527
[8]   2-POINT AND 3-POINT FUNCTIONS IN LIOUVILLE THEORY [J].
DORN, H ;
OTTO, HJ .
NUCLEAR PHYSICS B, 1994, 429 (02) :375-388
[9]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[10]   SOLUBLE MODEL FOR A SYSTEM WITH NEGATIVE SPECIFIC HEAT [J].
HERTEL, P ;
THIRRING, W .
ANNALS OF PHYSICS, 1971, 63 (02) :520-&