Gene networks controlling the initiation of flower development

被引:245
作者
Wellmer, Frank [1 ]
Riechmann, Jose L. [2 ,3 ]
机构
[1] Trinity Coll Dublin, Smurfit Inst Genet, Dublin 2, Ireland
[2] UAB, CSIC, IRTA, CRAG, Barcelona 08034, Spain
[3] ICREA, Barcelona 08010, Spain
基金
爱尔兰科学基金会;
关键词
FLORAL MERISTEM IDENTITY; SHORT-VEGETATIVE-PHASE; GENOME-WIDE ANALYSIS; LOCUS-T; HOMEOTIC GENE; TIME GENES; APETALA1/FRUITFULL-LIKE GENE; ARABIDOPSIS-THALIANA; VERNALIZATION GENES; EXPRESSION;
D O I
10.1016/j.tig.2010.09.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The onset of flower formation is a key regulatory event during the life cycle of angiosperm plants, which marks the beginning of the reproductive phase of development. It has been shown that floral initiation is under tight genetic control, and deciphering the underlying molecular mechanisms has been a main area of interest in plant biology for the past two decades. Here, we provide an overview of the developmental and genetic processes that occur during floral initiation. We further review recent studies that have led to the genome-wide identification of target genes of key floral regulators and discuss how they have contributed to an in-depth understanding of the gene regulatory networks controlling early flower development. We focus especially on a master regulator of floral initiation in Arabidopsis thaliana APETALA1 (AP1), but also outline what is known about the AP1 network in other plant species and the evolutionary implications.
引用
收藏
页码:519 / 527
页数:9
相关论文
共 103 条
[1]   FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].
Abe, M ;
Kobayashi, Y ;
Yamamoto, S ;
Daimon, Y ;
Yamaguchi, A ;
Ikeda, Y ;
Ichinoki, H ;
Notaguchi, M ;
Goto, K ;
Araki, T .
SCIENCE, 2005, 309 (5737) :1052-1056
[2]   cis-Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis [J].
Adrian, Jessika ;
Farrona, Sara ;
Reimer, Julia J. ;
Albani, Maria C. ;
Coupland, George ;
Turck, Franziska .
PLANT CELL, 2010, 22 (05) :1425-1440
[3]   A divergent external loop confers antagonistic activity on floral regulators FT and TFL1 [J].
Ahn, JH ;
Miller, D ;
Winter, VJ ;
Banfield, MJ ;
Lee, JH ;
Yoo, SY ;
Henz, SR ;
Brady, RL ;
Weigel, D .
EMBO JOURNAL, 2006, 25 (03) :605-614
[4]   Seasonal and developmental timing of flowering [J].
Amasino, Richard .
PLANT JOURNAL, 2010, 61 (06) :1001-1013
[5]   CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis [J].
An, HL ;
Roussot, C ;
Suárez-López, P ;
Corbesler, L ;
Vincent, C ;
Piñeiro, M ;
Hepworth, S ;
Mouradov, A ;
Justin, S ;
Turnbull, C ;
Coupland, G .
DEVELOPMENT, 2004, 131 (15) :3615-3626
[6]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[7]   Potent induction of Arabidopsis thaliana flowering by elevated growth temperature [J].
Balasubramanian, Sureshkumar ;
Sureshkumar, Sridevi ;
Lempe, Janne ;
Weigel, Detlef .
PLOS GENETICS, 2006, 2 (07) :980-989
[8]   Temperature Induced Flowering in Arabidopsis thaliana [J].
Balasubramanian, Sureshkumar ;
Weigel, Detlef .
PLANT SIGNALING & BEHAVIOR, 2006, 1 (05) :227-228
[9]   Floral initiation and inflorescence architecture:: A comparative view [J].
Benlloch, Reyes ;
Berbel, Ana ;
Serrano-Mislata, Antonio ;
Madueno, Francisco .
ANNALS OF BOTANY, 2007, 100 (03) :659-676
[10]   Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter [J].
Blázquez, MA ;
Green, R ;
Nilsson, O ;
Sussman, MR ;
Weigel, D .
PLANT CELL, 1998, 10 (05) :791-800