Decoding motor imagery from the posterior parietal cortex of a tetraplegic human

被引:383
作者
Aflalo, Tyson [1 ]
Kellis, Spencer [1 ]
Klaes, Christian [1 ]
Lee, Brian [2 ,3 ,4 ]
Shi, Ying [1 ]
Pejsa, Kelsie [1 ]
Shanfield, Kathleen [5 ]
Hayes-Jackson, Stephanie [5 ]
Aisen, Mindy [5 ]
Heck, Christi [2 ,3 ,4 ]
Liu, Charles [2 ,3 ,4 ]
Andersen, Richard A. [1 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[2] Univ So Calif, USC Neurorestorat Ctr, Los Angeles, CA 90033 USA
[3] Univ So Calif, Dept Neurosurg, Los Angeles, CA 90033 USA
[4] Univ So Calif, Dept Neurol, Los Angeles, CA 90033 USA
[5] Rancho Los Amigos Natl Rehabil Ctr, Downey, CA 90242 USA
关键词
BRAIN-MACHINE INTERFACES; OPTIC ATAXIA; REPRESENTATION; MOVEMENTS; SIGNALS; HAND;
D O I
10.1126/science.aaa5417
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonhuman primate and human studies have suggested that populations of neurons in the posterior parietal cortex (PPC) may represent high-level aspects of action planning that can be used to control external devices as part of a brain-machine interface. However, there is no direct neuron-recording evidence that human PPC is involved in action planning, and the suitability of these signals for neuroprosthetic control has not been tested. We recorded neural population activity with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could be decoded from these neural populations, including imagined goals, trajectories, and types of movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics that assist paralyzed patients.
引用
收藏
页码:906 / 910
页数:5
相关论文
共 22 条
  • [1] Intentional maps in posterior parietal cortex
    Andersen, RA
    Buneo, CA
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 2002, 25 : 189 - 220
  • [2] Toward More Versatile and Intuitive Cortical Brain-Machine Interfaces
    Andersen, Richard A.
    Kellis, Spencer
    Klaes, Christian
    Aflalo, Tyson
    [J]. CURRENT BIOLOGY, 2014, 24 (18) : R885 - R897
  • [3] Balint R, 1909, MON PSYCHIATR NEUROL, V25, P51
  • [4] Limb-specific representation for reaching in the posterior parietal cortex
    Chang, Steve W. C.
    Dickinson, Anthony R.
    Snyder, Lawrence H.
    [J]. JOURNAL OF NEUROSCIENCE, 2008, 28 (24) : 6128 - 6140
  • [5] High-performance neuroprosthetic control by an individual with tetraplegia
    Collinger, Jennifer L.
    Wodlinger, Brian
    Downey, John E.
    Wang, Wei
    Tyler-Kabara, Elizabeth C.
    Weber, Douglas J.
    McMorland, Angus J. C.
    Velliste, Meel
    Boninger, Michael L.
    Schwartz, Andrew B.
    [J]. LANCET, 2013, 381 (9866) : 557 - 564
  • [6] The role of parietal cortex in visuomotor control: What have we learned from neuroimaging?
    Culham, Jody C.
    Cavina-Pratesi, Cristiana
    Singhal, Anthony
    [J]. NEUROPSYCHOLOGIA, 2006, 44 (13) : 2668 - 2684
  • [7] Continuous Closed-Loop Decoder Adaptation with a Recursive Maximum Likelihood Algorithm Allows for Rapid Performance Acquisition in Brain-Machine Interfaces
    Dangi, Siddharth
    Gowda, Suraj
    Moorman, Helene G.
    Orsborn, Amy L.
    So, Kelvin
    Shanechi, Maryam
    Carmena, Jose M.
    [J]. NEURAL COMPUTATION, 2014, 26 (09) : 1811 - 1839
  • [8] GEORGOPOULOS AP, 1982, J NEUROSCI, V2, P1527
  • [9] GNADT JW, 1988, EXP BRAIN RES, V70, P216
  • [10] SEPARATE VISUAL PATHWAYS FOR PERCEPTION AND ACTION
    GOODALE, MA
    MILNER, AD
    [J]. TRENDS IN NEUROSCIENCES, 1992, 15 (01) : 20 - 25